Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SOHO discovers its 1500th comet

30.06.2008
The ESA/NASA SOHO spacecraft has just discovered its 1500th comet, making it more successful than all other comet discoverers throughout history put together. Not bad for a spacecraft that was designed as a solar physics mission.

SOHO’s record-breaking discovery was made late on 25 June. When it comes to comet catching, the SOlar and Heliospheric Observatory has one big advantage over everybody else: its location. Situated between the Sun and Earth, it has a privileged view of a region of space that can rarely be seen from Earth. From the surface, we can see regions close to the Sun clearly only during an eclipse.

Roughly 85% of SOHO discoveries are fragments from a once-great comet that split apart in a death plunge around the Sun, probably many centuries ago. The fragments are known as the Kreutz group and now pass within 1.5 million km of the Sun’s surface when they return from deep space.

At this proximity, which is a near miss in celestial terms, most of the fragments are finally destroyed, evaporated by the Sun’s fearsome radiation – within sight of SOHO’s electronic eyes. The images are captured by the Large Angle and Spectrometric Coronograph (LASCO), one of 12 instruments on board.

Of course, LASCO itself does not make the detections; that task falls to an open group of highly-skilled volunteers who scan the data as soon as it is downloaded to Earth. Once SOHO transmits to Earth, the data can be on the Internet and ready for analysis within 15 minutes.

Enthusiasts from all over the world look at each individual image for a tiny moving speck that could be a comet. When someone believes they have found one, they submit their results to Karl Battams at the Naval Research Laboratory, Washington DC, who checks all of SOHO’s findings before submitting them to the Minor Planet Center, where the comet is catalogued and its orbit calculated.

The wealth of comet information has value beyond mere classification. “This is allowing us to see how comets die,” says Battams. When a comet constantly circles the Sun, it loses a little more ice each time, until it eventually falls to pieces, leaving a long trail of fragments. Thanks to SOHO, astronomers now have a plethora of images showing this process. “It’s a unique data set and could not have been achieved in any other way,” says Battams.

All this is on top of the extraordinary revelations that SOHO has provided over the 13 years it has been in space, observing the Sun and the near-Sun environment. “Catching the enormous total of comets has been an unplanned bonus,” says Bernhard Fleck, ESA SOHO Project Scientist.

Bernhard Fleck | alfa
Further information:
http://www.esa.int/esaSC/SEMB94SHKHF_index_0.html

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>