Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Made-to-order Isotopes Hold Promise on Science's Frontier

13.05.2008
Designer labels have a lot of cachet -- a principle that’s equally true in fashion and physics.

The future of nuclear physics is in designer isotopes -- the relatively new power scientists have to make specific rare isotopes to solve scientific problems and open doors to new technologies, according to Bradley Sherrill, a University Distinguished Professor of physics and associate director for research at the National Superconducting Cyclotron Laboratory at Michigan State University.

"We have developed a remarkable capability over the last 10 or so years that allows us to build a specific isotope to use in research," Sherrill said. "It is a new tool that promises to allow whole new directions in research to move forward. There are tremendous advances that are possible."

Sherrill outlined some of the possibilities -- and what it will take to get there -- in a perspective piece in the May 9 edition of Science magazine.

In that article, he writes nanotechnology is getting a lot of attention for the astonishing possibilities of constructing objects with individual atoms and molecules. Sherrill, however, said that nanotechnology hardly is the last word in small.

The chemical changes that brought about the formation of the elements in the bellies of stars are being recreated in laboratories such as MSU’s NSCL. Advances in basic nuclear science already have given way to technologies such as PET scans -- medical procedures that use special isotopes to target specific types of tumors.

Isotopes are the different versions of an element. Their nuclei have different numbers of neutrons, and thus give them different properties. Rare isotopes don’t always exist in nature – they must be coaxed out with high-energy collisions created by special machines, like those in MSU’s Coupled Cyclotron facility. As technology advances, newer equipment is needed.

The next step for the U.S. nuclear science community will be the Facility for Rare Isotope Beams, a world-leading facility for the study of nuclear structure and nuclear astrophysics, expected to be built by the U.S. Department of Energy sometime in the next decade. Through his involvement on various national committees, Sherrill has long been a champion of a next-generation facility to ensure U.S. competitiveness in rare isotope research and nuclear science education.

Sherrill said this type of basic science -- science to examine the core nature of the elements of life -- holds its own gold mine of potential. He offers up PET scans -- short for positron emission tomography -- as an example of the payoff associated with pushing the bounds of accelerator science to study new specific isotopes. To create PET scans, scientists first had to create an isotope with a specific radioactivity that decayed quickly enough and safely enough to inject in the body.

"The rare-isotope research supported by National Science Foundation at the NSCL enables us to push forward our understanding of nuclei at the frontiers of stability, with direct connections to the processes that produce the elements in our world and that underlie the life cycle of stars," said Bradley Keister, a program officer in NSF Physics Division. "Applications to societal areas including medicine and security have traditionally gone hand in hand with these ever-advancing capabilities."

In the Science piece, Sherrill said that aggressively pursuing rare isotope research is a national imperative.

"These are isotopes that are not easy to produce. That’s the frontier we’re working on," Sherrill writes. "A wider range of available isotopes should benefit the fields of biomedicine (by producing an expanded portfolio of radioisotopes), international security (by providing the technical underpinning to nuclear forensics specialists) and nuclear energy (by leading to better understanding of the sort of nuclear reactions that will power cleaner, next-generation reactors)."

Contact: Brad Sherrill
sherrill@nscl.msu.edu
517-333-6322
Michigan State University

Brad Sherrill | newswise
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht A graphene superconductor that plays more than one tune
18.07.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht Researchers put a new spin on molecular oxygen
17.07.2019 | Osaka University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>