Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Made-to-order Isotopes Hold Promise on Science's Frontier

13.05.2008
Designer labels have a lot of cachet -- a principle that’s equally true in fashion and physics.

The future of nuclear physics is in designer isotopes -- the relatively new power scientists have to make specific rare isotopes to solve scientific problems and open doors to new technologies, according to Bradley Sherrill, a University Distinguished Professor of physics and associate director for research at the National Superconducting Cyclotron Laboratory at Michigan State University.

"We have developed a remarkable capability over the last 10 or so years that allows us to build a specific isotope to use in research," Sherrill said. "It is a new tool that promises to allow whole new directions in research to move forward. There are tremendous advances that are possible."

Sherrill outlined some of the possibilities -- and what it will take to get there -- in a perspective piece in the May 9 edition of Science magazine.

In that article, he writes nanotechnology is getting a lot of attention for the astonishing possibilities of constructing objects with individual atoms and molecules. Sherrill, however, said that nanotechnology hardly is the last word in small.

The chemical changes that brought about the formation of the elements in the bellies of stars are being recreated in laboratories such as MSU’s NSCL. Advances in basic nuclear science already have given way to technologies such as PET scans -- medical procedures that use special isotopes to target specific types of tumors.

Isotopes are the different versions of an element. Their nuclei have different numbers of neutrons, and thus give them different properties. Rare isotopes don’t always exist in nature – they must be coaxed out with high-energy collisions created by special machines, like those in MSU’s Coupled Cyclotron facility. As technology advances, newer equipment is needed.

The next step for the U.S. nuclear science community will be the Facility for Rare Isotope Beams, a world-leading facility for the study of nuclear structure and nuclear astrophysics, expected to be built by the U.S. Department of Energy sometime in the next decade. Through his involvement on various national committees, Sherrill has long been a champion of a next-generation facility to ensure U.S. competitiveness in rare isotope research and nuclear science education.

Sherrill said this type of basic science -- science to examine the core nature of the elements of life -- holds its own gold mine of potential. He offers up PET scans -- short for positron emission tomography -- as an example of the payoff associated with pushing the bounds of accelerator science to study new specific isotopes. To create PET scans, scientists first had to create an isotope with a specific radioactivity that decayed quickly enough and safely enough to inject in the body.

"The rare-isotope research supported by National Science Foundation at the NSCL enables us to push forward our understanding of nuclei at the frontiers of stability, with direct connections to the processes that produce the elements in our world and that underlie the life cycle of stars," said Bradley Keister, a program officer in NSF Physics Division. "Applications to societal areas including medicine and security have traditionally gone hand in hand with these ever-advancing capabilities."

In the Science piece, Sherrill said that aggressively pursuing rare isotope research is a national imperative.

"These are isotopes that are not easy to produce. That’s the frontier we’re working on," Sherrill writes. "A wider range of available isotopes should benefit the fields of biomedicine (by producing an expanded portfolio of radioisotopes), international security (by providing the technical underpinning to nuclear forensics specialists) and nuclear energy (by leading to better understanding of the sort of nuclear reactions that will power cleaner, next-generation reactors)."

Contact: Brad Sherrill
sherrill@nscl.msu.edu
517-333-6322
Michigan State University

Brad Sherrill | newswise
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>