Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton discovered part of the missing matter in the Universe

06.05.2008
A team of astronomers from Netherlands and Germany discovered part of the missing matter in the Universe using the European X-ray satellite XMM-Newton.

The existence of the tenuous hot gas, which is believed to be located within the connecting threads of the enormous cosmic web, was predicted by theoreticians about 10 years ago. However, its very low density hampered many attempts to detect it. Now astronomers discovered the hottest part of the missing matter made of atoms.

Most of the matter/energy in the Universe is of unknown nature – and astronomers call it dark. 72% of the Universe is a mysterious dark energy, causing an accelerated expansion of the Universe. Some 23% of the total amount of matter/energy is constituted by the so called dark matter, which is made of heavy particles still waiting to be discovered by particle physicists. Only 4.6% percent of the Universe is made of normal matter as we know it, consisting of protons and neutrons - called baryons - which together with electrons are the building blocks of atoms. Small as this percentage might be, still a big part of this "ordinary" baryonic matter is also missing. All the stars, galaxies, and gas that astronomers observe in the Universe account for less than a half of all the baryons that should be around.

All the matter in the Universe, including the galaxies observed with optical telescopes, is distributed in a web-like structure. Dense nodes of this cosmic web are clusters of galaxies, the biggest objects in the Universe. For about the past ten years, astronomers suspected that the missing baryonic matter is in the form of hot gas with very low densities which permeates the filamentary structure of the cosmic web. Due to its high temperature this gas is expected to emit primarily in the far-ultraviolet and X-ray band. However, the very low density of the gas makes its observation difficult.

Astronomers using the European XMM-Newton X-ray satellite observed a pair of clusters of galaxies - Abell 222 and Abell 223. The images and the spectra of this system revealed a bridge of hot gas connecting the clusters. "The hot gas that we see in this bridge or filament is probably the hottest and densest part of the diffuse gas in the cosmic web, which is believed to constitute about half of the baryonic matter in the Universe" says Norbert Werner from SRON Netherlands Institute for Space Research, the leader of the team reporting the discovery.

"The discovery of the warmest of the missing baryons is important as various models, while all predicting the missing baryons in some form of warm gas, tend to disagree about the extremes." adds Alexis Finoguenov, member of the team from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. "The discovery was made possible by a very fortunate geometry, where we see the filament along the line of sight, looking into it, instead of looking at it from the side.

This means that the entire emission from the filament is concentrated in a small region of the sky, making the observation of this low density gas possible for the first time" explains Jelle Kaastra, team member and senior scientist at SRON. "Prior to the sensitivity level achieved with deep XMM-Newton observations, we could only see the clusters, the dense knots of the web. Now we are starting to see the connecting wires of the immense cosmic 'spider' web" adds Aurora Simionescu, team member from MPE. "We saw the filament years ago as a bridge between the clusters in the distribution of the galaxies, and the gravitational weak lensing data also indicated the presence of a massive structure.

The discovery of the hot gas associated with this structure will help us to better understand the evolution of the cosmic web" says Jörg Dietrich, team member from the European Southern Observatory, who investigated this pair of clusters of galaxies for many years. "This is only the beginning. To understand the distribution of the matter within the cosmic web, we have to see more systems like this one. And ultimately launch a dedicated space observatory to observe the cosmic web with a much higher sensitivity than possible with the current satellites. Our result allows to set up reliable requirements for those new missions." concludes Norbert Werner.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl
http://www.mpa-garching.mpg.de/galform/data_vis/#flying_filament

More articles from Physics and Astronomy:

nachricht Unprecedented insight into two-dimensional magnets using diamond quantum sensors
26.04.2019 | Universität Basel

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
26.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>