Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric sail invention approaches implementation

16.04.2008
The electric solar wind sail developed at the Finnish Meteorological Institute has moved rapidly from invention towards implementation. Electric sail propulsion might have a large impact on space research and moving in space in general.

The electric solar wind sail developed by Dr. Pekka Janhunen at the Finnish Meteorological Institute might revolutionise travelling in deep space. The electric sail is a Finnish invention which uses the solar wind as its thrust source and therefore needs no fuel or propellant. The solar wind is a continuous plasma stream emanating from the Sun. Changes in the properties of the solar wind cause auroral brightening and magnetic storms, among other things.

Progress without problems

Over its two-year history, the electric sail has developed rapidly from invention towards implementation and has aroused much international interest. The main parts of the device are long metallic tethers and a solar-powered electron gun which keeps the tethers positively charged. The solar wind exerts a small but continuous thrust on the tethers and the spacecraft. The electric sail and its applications have been developed mainly at the Finnish Meteorological Institute, but component work is carried out at the University of Helsinki and in Germany, Sweden, Russia and Italy.

“We haven't encountered major problems in any of the technical fields thus far. This has already enabled us to start planning the first test mission,” says Dr. Pekka Janhunen. An important subgoal was reached when the Electronics Research Laboratory of the University of Helsinki managed to develop a method for constructing a multiline micrometeoroid-resistant tether out of very thin metal wires using ultrasonic welding. The newly developed technique allows the bonding together of thin metal wires in any geometry; thus, the method might also have spinoff applications outside the electric sail.

Potential important applications of the electric sail

If and when realised, the electric sail could enable faster and cheaper Solar System science and exploration. It might also enable economic utilisation of asteroid resources for, e.g. producing rocket fuel in orbit.

“The electric sail might lower the cost of all space activities and thereby, for example, help making large solar power satellites a viable option for clean electricity production. Solar power satellites orbiting in the permanent sunshine of space could transmit electric power to Earth by microwaves without interruptions. Continuous power would be a major benefit compared to, e.g. ground-based solar power where storing the energy over night, cloudy weather and winter are tricky issues, especially here in the far North,” says Dr. Pekka Janhunen.

The electric sail was invented as a by-product of basic research done at the Finnish Meteorological Institute on the interaction of the solar wind with planets and their atmospheres. Work on the electric sail in Finland is currently funded by the Academy of Finland and private foundations.

The first international electric sail meeting will be arranged at ESA ESTEC in Noordwijk, The Netherlands on May 19, 2008.

Eija Vallinheimo | alfa
Further information:
http://www.fmi.fi/news/index.html?Id=1208243495.html
http://www.electric-sailing.com

More articles from Physics and Astronomy:

nachricht Initial repulsion does not rule out subsequent attraction
13.09.2019 | Universität Regensburg

nachricht NASA's Hubble finds water vapor on habitable-zone exoplanet for 1st time
12.09.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>