Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science with the solar space observatory Hinode

20.03.2008
The solar space observatory Hinode was launched in September 2006 [1], with the name "Hinode" meaning sunrise in Japanese. The Hinode satellite carries a solar optical telescope (SOT), an X-ray telescope (XRT), and an EUV imaging spectrometer (EIS).

Hinode investigates both the interior and the atmospheric regions of the Sun. Its primary objectives are to address the origin of the Sun's magnetic field, the driving force behind solar eruptive events, and the nature of the hot corona.

As recognition of the impact of Hinode on various branches of solar physics, Astronomy & Astrophysics is publishing a special feature this week consisting of 18 Letters that present the new results obtained with Hinode. These papers focus on the physics of sunspots, the emergence of magnetic flux on the solar surface, and the dynamics in the solar corona. Figure 1 illustrates these topics.

A handful of these papers are about sunspots, which are still mysterious in several aspects. They highlight the fine structure of the penumbra, which is the ring of radial structures surrounding the dark core of the spots (see Fig. 2). They present new evidence that the penumbra consists of sea-serpent-like magnetic flux tubes, embedded in a background wrapped around these tubes and connected to magnetic features outside the spot.

Several papers also study the dynamics of the solar corona, focusing on active solar regions and coronal mass ejections (CME, also known as transient events, illustrated on Fig. 3). The new Hinode observations show that the standard scenario describing solar flares do not fit microflares. The high resolution of the soft X-ray telescope on Hinode (see Fig. 4) will help to distinguish between different scenarios.

The papers published this week in A&A – which illustrate only a small part of the science with the new data – show new directions in solar research facilitated by the new solar space telescope Hinode. Through observations of all atmospheric layers of the Sun, from the photosphere and chromosphere into the corona, data from the Hinode observatory provide new insight into the structure and dynamics of the solar atmosphere, an important step toward a better understanding of stellar atmospheres in general.

Figures available at http://www.aanda.org/content/view/291/42/lang,en/

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/291/42/lang,en/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>