Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover

05.03.2008
For centuries, engineers have bent and torn metals to test their strength and ductility.

Now, materials scientists at the University of Pennsylvania School of Engineering and Applied Science are studying the same metals but at nanoscale sizes in the form of wires a thousand times thinner than a human hair. This work has enable Penn engineers to construct a theoretical model to predict the strength of metals at the nanoscale.

Using this model, they have found that, while metals tend to be stronger at nanoscale volumes, their strengths saturate at around 10-50 nanometers diameter, at which point they also become more sensitive to temperature and strain rate. Such prediction of different strength regimes of nano-solids is important for future application and engineering design of nanotechnology.

Such small-volume materials with relatively large surface areas are now routinely employed in microchips and nanoscience and technology, and their mechanical properties can differ vastly from their macroscale counterparts. Typically, smaller is stronger. A gold wire 200 nanometers in diameter can be 50 times stronger per area than centimeter-sized single-crystal gold. Engineers investigated the "smaller is stronger" trend.

Ju Li, an associate professor in the Department of Materials Science and Engineering at Penn, and his collaborators at the Georgia Institute of Technology have combined transition state theory, explicit atomistic energy landscape calculation and computer simulation to establish a theoretical framework to predict the strengths of small-volume materials. Unlike previous models, their prediction can be directly compared with experiments performed at realistic temperature and loading rates. This research appeared as a cover article in Volume 100 of Physical Review Letters.

Their study demonstrated that the free, exterior surface of nanosized materials can be fertile breeding grounds of dislocations at high stresses. Dislocations are string-like defects whose movements give rise to plastic flow, or shape change, of solids. In large-volume materials, it is easy for dislocations to multiply and entangle and to maintain a decent population inside; however, in small-volume materials, dislocations could show up and then exit the sample, one at a time. To initiate and sustain plastic flow in this case, dislocations need to be frequently nucleated fresh from the surface.

Since surface is itself a defect, researchers asked to what degree the measured strength of a small-volume material reflects surface properties and surface-mediated processes, particularly when the sample size is in the range of tens of nanometers. Li and his team modeled tiny bits of gold and copper to investigate the probabilistic nature of surface dislocation nucleation. The study showed that the activation volume associated with surface dislocation nucleation is characteristically in the range of 1–10 times the atomic volume, much smaller than that of many conventional dislocation processes. Small activation volumes will lead to sensitive temperature and strain-rate dependence of the critical stress, providing an upper bound to the size-strength relation.

From this, the team predicted that the "smaller is stronger" trend will saturate at wire diameters 10-50 nanometers for most metals. For comparison, computers now contain microchips with 45 nanometer strained silicon features. Associated with this saturation in strength is a transition in the rate-controlling mechanism, from collective dislocation dynamics to single dislocation nucleation.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>