Prototype measuring device for the most minuscule forces

In the case of scanning force microscopes, the nominal values for bending stiffnesses deviate distinctly from the actual values. With the current devices, calibrations of cantilevers are accurate to > 5%.

For forces in the nano- and piconewton range one therefore requires more accurate realisations and stable transfer standards.

In order to offer this in future, the Physikalisch-Technische Bundesanstalt (PTB) has set up the protoype of a nanonewton force-measuring device. First measurements show that the measuring principle functions well: The very small force (of approx. 50 pN) of a laser beam on the pendulum, the “heart” of the apparatus, is measured with a voltage (acting as counterforce), and this with a measuring uncertainty of 5 % to 10 %.

First measurements have shown that the measuring device is sufficiently protected against vibrations (so-called “seismic noise”). A large-scale device, which is to be set up next year, is envisaged to bring still further improvements here. Furthermore, other changes are also needed to be able to actually measure on cantilevers (as transfer standards).

Media Contact

Erika Schow alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors