Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype measuring device for the most minuscule forces

22.02.2008
When chemists want to measure the bonding forces in molecules or other most minuscule forces very accurately, they have to calibrate their measuring instruments (for example the cantilevers, i.e. the measuring tips, of scanning force microscopes). And if it is a matter of comparing the attained results with other results, one must refer to a common basis.

In the case of scanning force microscopes, the nominal values for bending stiffnesses deviate distinctly from the actual values. With the current devices, calibrations of cantilevers are accurate to > 5%.

For forces in the nano- and piconewton range one therefore requires more accurate realisations and stable transfer standards.

In order to offer this in future, the Physikalisch-Technische Bundesanstalt (PTB) has set up the protoype of a nanonewton force-measuring device. First measurements show that the measuring principle functions well: The very small force (of approx. 50 pN) of a laser beam on the pendulum, the "heart" of the apparatus, is measured with a voltage (acting as counterforce), and this with a measuring uncertainty of 5 % to 10 %.

First measurements have shown that the measuring device is sufficiently protected against vibrations (so-called "seismic noise"). A large-scale device, which is to be set up next year, is envisaged to bring still further improvements here. Furthermore, other changes are also needed to be able to actually measure on cantilevers (as transfer standards).

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/nachrichten/2008/_nanokraft.html

More articles from Physics and Astronomy:

nachricht Simple experiment explains magnetic resonance
09.12.2019 | University of California - Riverside

nachricht Electronic map reveals 'rules of the road' in superconductor
09.12.2019 | Rice University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>