Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Impact 'celebrates' New Year's Eve with Earth flyby

31.12.2007
Earth Flyby and Moon Pics Mark Start of Journey to Hartely 2

This New Year's Eve the University of Maryland-led Deep Impact team will again celebrate a holiday in a way that few can match, when their Deep Impact spacecraft "buzzes" the Earth on a flyby that marks the beginning of a more than two-and-a-half-year journey to comet Hartley 2.

In 2005, the Deep Impact team, led by University of Maryland astronomer Michael A'Hearn, celebrated July 4th by smashing a probe into comet Tempel 1 to give the world its first look inside a comet.

The trip to Hartley 2 is one part of a new two-part mission for the team and its Deep Impact spacecraft. During the first six months of the journey, the Extrasolar Planet Observations and Characterization (EPOCh) mission team will use the larger of the two telescopes on the Deep Impact spacecraft to search for Earth-sized planets around five stars selected as likely candidates for such planets. Upon arriving at the comet the Deep Impact eXtended Investigation (DIXI) will conduct an extended flyby of Hartley 2 using all three of the spacecraft's instruments (two telescopes with digital color cameras and an infrared spectrometer. The name for the new combined mission, EPOXI, is a combination of the names of its component missions (EPOCh + DIXI = EPOXI).

The team is using the flyby of Earth to calibrate the spacecrafts instruments for the new mission and to help slingshot it on the way toward Hartley 2. Although the spacecraft will come closest to the Earth on New Year's Eve, the Maryland-led team has already begun its calibration work.

"On Saturday, 29 December, two days before its close flyby of Earth, the Deep Impact flyby spacecraft made observations of the moon to calibrate its instruments for its new mission, EPOXI," said A'Hearn. "Some calibrations are obtainable only on a bright, large source, like the moon when reasonably close to it. It looks as though everything operated just as the science team asked it to operate and you can't ask for anything better than that,” he said. "

'This Earth gravity assist provided a unique opportunity for us to calibrate our instruments using the Moon," said Jessica Sunshine, a senior research scientist at the University of Maryland. "In particular, the Moon is very useful because it fills the entire field of view of the infrared spectrometer. The results show that our spacecraft pointing and commanding was spot on. We also made measurements which will allow us to cross-calibrate our instruments with telescopic data and, in the very near future, with a wealth of lunar measurements from new orbiting spacecraft. These data will significantly improve the science from EPOCh observations of Earth and the DIXI flyby of comet Hartley 2, as well as from Deep Impact's prime mission to comet Tempel 1," said Sunshine who is deputy principal investigator on DIXI.

Lee Tune | EurekAlert!
Further information:
http://www.umd.edu
http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1564
http://deepimpact.umd.edu/

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>