Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop 2-D invisibility cloak

20.12.2007
Harry Potter may not have talked much about plasmonics in J. K. Rowling's fantasy series, but University of Maryland researchers are using this emerging technology to develop an invisibility cloak that exists beyond the world of bespectacled teenage wizards.

A research team at Maryland's A. James Clark School of Engineering comprised of Professor Christopher Davis, Research Scientist Igor Smolyaninov, and graduate student Yu-Ju Hung, has used plasmon technology to create the world's first invisibility cloak for visible light. The engineers have applied the same technology to build a revolutionary superlens microscope that allows scientists to see details of previously undetectable nanoscale objects.

Generally speaking, when we see an object, we see the visible light that strikes the object and is reflected. The Clark School team's invisibility cloak refracts (or bends) the light that strikes it, so that the light moves around and past the cloak, reflecting nothing, leaving the cloak and its contents "invisible."

The invisibility cloak device is a two-dimensional pattern of concentric rings created in a thin, transparent acrylic plastic layer on a gold film. The plastic and gold each have different refractive properties. The structured plastic on gold in different areas of the cloak creates "negative refraction" effects, which bend plasmons—electron waves generated when light strikes a metallic surface under precise circumstances—around the cloaked region.

This manipulation causes the plasmon waves to appear to have moved in a straight line. In reality they have been guided around the cloak much as water in a stream flows around a rock, and released on the other side, concealing the cloak and the object inside from visible light. The invisibility that this phenomenon creates is not absolutely perfect because of energy loss in the gold film.

The team achieved this invisibility under very specialized conditions. The researchers' cloak is just 10 micrometers in diameter; by comparison, a human hair is between 50 to 100 micrometers wide. Also, the cloak uses a limited range of the visible spectrum, in two dimensions. It would be a significant challenge to extend the cloak to three dimensions because researchers would need to control light waves both magnetically and electronically to steer them around the hidden object. The technology initially may work only for small objects of specific controlled shape.

The team also has used plasmonics to develop superlens microscopy technology, which can be integrated into a conventional optical microscope to view nanoscale details of objects that were previously undetectable.

The superlens microscope could one day image living cells, viruses, proteins, DNA molecules, and other samples, operating much like a point-and-shoot camera. This new technology could revolutionize the capability to view nanoscale objects at a crucial stage of their development. The team believes they can improve the resolution of their microscope images down to about 10 nanometers—one ten thousandth of the width of a human hair.

A large reason for the success of the group's innovations in both invisibility and microscopy is that surface plasmons have very short wave lengths, and can therefore move data around using much smaller-scale guiding structures than in existing devices. These small, rapid waves are generated at optical frequencies, and can transport large amounts of data. The group also has made use of the unique properties of metamaterials, artificially structured composites that help control electromagnetic waves in unusual ways using plasmonic phenomena.

The diverse applications the group has derived from their plasmonics research is an example of the ingenuity of researchers approaching new and dynamic technologies that offer broad and unprecedented capabilities. The research has attracted a great deal of attention within the scientific community, industry and government agencies. Related plasmonics research offers applications for military and computer chip technologies, which could benefit from the higher frequencies and rapid data transfer rates that plasmons offer.

The team's research has been funded by the National Science Foundation and Clark School Corporate Partner BAE Systems.

Smolyaninov and Davis have published an article in the journal Science about their superlens microscope technology, titled "Magnifying Superlens in the Visible Frequency Range." The group and their colleagues from Purdue University will also soon publish a paper about their invisibility cloak research. A manuscript describing the invisibility cloak is available online at http://arxiv.org/abs/0709.2862.

About the A. James Clark School of Engineering
The Clark School of Engineering, situated on the rolling, 1,500-acre University of Maryland campus in College Park, Md., is one of the premier engineering schools in the U.S.

The Clark School's graduate programs are collectively the fastest rising in the nation. In U.S. News & World Report's annual rating of graduate programs, the school is 15th among public and private programs nationally, 9th among public programs nationally and first among public programs in the mid-Atlantic region. The School offers 13 graduate programs and 12 undergraduate programs, including degree and certification programs tailored for working professionals.

The school is home to one of the most vibrant research programs in the country. With major emphasis in key areas such as communications and networking, nanotechnology, bioengineering, reliability engineering, project management, intelligent transportation systems and space robotics, as well as electronic packaging and smart small systems and materials, the Clark School is leading the way toward the next generations of engineering advances.

Ted Knight | EurekAlert!
Further information:
http://www.eng.umd.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>