Towards the Quantum Standard of Electric Current

The group has developed a frequency to current converter, the accuracy of which is based on the known charge of an electron and the extreme accuracy in defining frequency. The nanodevice is essentially a single electron transistor which works as a simple single-electron turnstile. Its best performance is achieved at very low temperatures.

Previously, the electric current and its unit, the ampere, have been defined through the classical force induced to two parallel leads carrying the current. In the past years, many proposals and experiments have been put forward to achieve a relatively simple and accurate high-yield current source. No satisfying device has been implemented yet.

”The goal of our research has been to develop a reliable frequency to current converter since the frequency can be fixed with ultra high accuracy. It was interesting to observe that in this more than two decades old field, there is still room for simple inventions”, says professor Jukka Pekola, the leader of the PICO group at Low Temperature Laboratory.

In the experiments carried out at TKK in Micronova, the method was observed to work so well (see the figure) that the device can be regarded as one of the most potential candidates to realize a metrological current pump.

This device, which may revolutionize quantum metrology, works as follows: The turnstile is biased to a fixed dc voltage and its island is capacitively coupled to a sinusoidal gate voltage with frequency f. Thus the dc off-set and the amplitude of the gate drive determine exactly the number, n, of electrons passed through the device in each cycle, and hence the electric current. In this case, the current is defined to be nef, where e is the electron charge.

”At the moment, our work is focused on eliminating the remaining errors using advanced designs of the device and active error correction schemes”, tells Jukka Pekola with optimism.

The research is closely related to the so-called quantum metrological triangle experiment, in which the fundamental constants of nature e and h (Planck’s constant) are checked for consistency using the quantum standards of electric voltage, current, and resistance. These kinds of experiments are pursued in a couple of laboratories world wide, for example, at Otaniemi campus in the Center for Metrology and Accreditation in collaboration with Low Temperature Laboratory and VTT.

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Targeted use of enfortumab vedotin for the treatment of advanced urothelial carcinoma

New study identifies NECTIN4 amplification as a promising biomarker – Under the leadership of PD Dr. Niklas Klümper, Assistant Physician at the Department of Urology at the University Hospital Bonn…

A novel universal light-based technique

…to control valley polarization in bulk materials. An international team of researchers reports in Nature a new method that achieves valley polarization in centrosymmetric bulk materials in a non-material-specific way…

How evolution has optimised the magnetic sensor in birds

The magnetic sense of migratory birds is probably based on the protein cryptochrome 4, and a genetic study has now provided further support for this theory. A team of researchers…

Partners & Sponsors