Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum obstacle course changes material from superconductor to insulator

30.11.2016

Researchers from Brown University have demonstrated an unusual method of putting the brakes on superconductivity, the ability of a material to conduct an electrical current with zero resistance.

The research shows that weak magnetic fields -- far weaker than those that normally interrupt superconductivity -- can interact with defects in a material to create a "random gauge field," a kind of quantum obstacle course that generates resistance for superconducting electrons.


Nanoscale defects in a superconducting material can interact with weak magnetic fields to put the brakes on superconducting electrons, new research shows. It's a demonstration of a phase change from superconducting to insulating that had been predicted in theory, but never before shown experimentally.

Credit: Valles Lab / Brown University

"We're disrupting superconductivity in a way that people haven't done before," said Jim Valles, a professor of physics at Brown who directed the work. "This kind of phase transition involving a random gauge field had been predicted theoretically, but this is the first time it has been demonstrated in an experiment."

The research is published in the journal Scientific Reports.

The superconducting state depends on the formation and propagation of "Cooper pairs," coupled electrons that, at very low temperatures, behave more like waves than particles. Their wavelike property enables them to travel across the structure of a material without banging into atomic nuclei along way, reducing the resistance they encounter to zero. Cooper pairs are named for Leon Cooper, a Brown University physicist who shared the 1972 Nobel Prize in physics for explaining their behavior.

The bonds between paired electrons are not particularly strong. A small increase in temperature or the presence of a magnetic field with a strength above a critical value (the value varies a bit for different materials) can break the pairs apart, which in turn breaks the superconducting state.

But Valles and his colleagues were investigating a different method of destroying superconductivity. Instead of breaking the Cooper pairs apart, Valles's team wanted to see if they could disrupt the way in which the pairs propagate.

When a material is superconducting, Cooper pairs propagate "in phase," meaning the peaks and troughs of their quantum waves are correlated. Knocking the waves out of phase would render them unable to propagate in a way that would sustain the superconducting state, thereby converting the material to an insulator.

To demonstrate the phenomenon, Valles and his colleagues created small superconducting chips made of amorphous bismuth. The chips were made with nanoscale holes in them, arranged in a randomly repeating honeycomb-like pattern. The team then applied a weak magnetic field to the chips. Under normal circumstances, a superconductor will repel any magnetic field below a critical value and go right on superconducting. But the defects in the bismuth caused the material to repel the magnetic field in a peculiar way, forming tiny vortices of electrical current surrounding each hole.

To superconducting Cooper pairs, those vortices form a quantum obstacle course too difficult to cross. The current vortices push and pull on the wave fronts of passing Cooper pairs in random patterns, knocking the waves out of phase with each other.

"We're disrupting the coherent motion of the wave fronts," Valles said. "As a result the Cooper pairs become localized -- unable to propagate -- and the system goes from superconducting to insulating."

The research may help scientists understand the fundamental properties of superconducting materials -- in particular, how defects in those materials could interrupt superconductivity in certain situations. Understanding how these materials behave will be important as their use increases in applications like quantum computers, which will rely on consistent superconducting states.

"In technology, we're trying to eke more and more out of the quantum properties of materials, but those materials all have these messy impurities in them," Valles said. "We've shown the effects of a certain kind of quantum randomness in a superconductor that is driven by a magnetic field and random defects. So this work may be interesting for understanding what limitations there are in exploiting the quantum properties of materials."

Valles is hopeful that the findings and the technique described in the paper will lead to other fundamental advances.

"We can tune this phase shifter in a well-defined way that's straightforward to model, which can allow us to understand quantum phase transitions a little bit better," Valles said. "So in a sense, we've created a new knob we can twist to affect the properties of these materials and see how they react."

###

The work was led by Hung Nguyen, a former graduate student at Brown, and Shawna Hollen of the University of New Hampshire. Additional co-authors were Jeffrey Shainline (National Institute of Standards and Technology) and Jimmy Xu (Brown). The work was supported by the National Science Foundation (DMR-1307290, DMR-0907357), the Air Force Office of Scientific Research and the Asian Office of Aerospace Research and Development.

Kevin Stacey | EurekAlert!

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>