Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum coupling

21.12.2017

Tübingen University physicists are the first to link atoms and superconductors in key step towards new hardware for quantum computers and networks

Today’s quantum technologies are set to revolutionize information processing, communications, and sensor technology in the coming decades. The basic building blocks of future quantum processors are, for example, atoms, superconducting quantum electronic circuits, spin crystals in diamonds, and photons. In recent years it has become clear that none of these quantum building blocks is able to meet all the requirements such as receiving and storing quantum signals, processing and transmitting them.


Graphic: Hybrid quantum architecture - Superconductor chip with captured atoms

A research group headed by Professors József Fortágh, Reinhold Kleiner and Dieter Kölle of the University of Tübingen Institute of Physics has succeeded in linking magnetically-stored atoms on a chip with a superconducting microwave resonator.

The linking of these two building blocks is a significant step towards the construction of a hybrid quantum system of atoms and superconductors which will enable the further development of quantum processors and quantum networks. The study has been published in the latest Nature Communications.

Quantum states allow especially efficient algorithms which far outstrip the conventional options to date. Quantum communications protocols enable, in principle, unhackable data exchange. Quantum sensors yield the most precise physical measurement data. “To apply these new technologies in everyday life, we have to develop fundamentally new hardware components,” Fortágh says. Instead of the conventional signals used in today’s technology – bits – which can only be a one or a zero, the new hardware will have to process far more complex quantum entangled states.

“We can only achieve full functionality via the combination of different quantum building blocks,” Fortágh explains. In this way, fast calculations can be made using superconducting circuits; however storage is only possible on very short time scales. Neutral atoms hovering over a chip’s surface, due to their low strength for interactions with their environment, are ideal for quantum storage, and as emitters of photons for signal transmission.

For this reason, the researchers connected two components to make a hybrid in their latest study. The hybrid quantum system combines nature’s smallest quantum electronic building blocks – atoms – with artificial circuits – the superconducting microwave resonators.

“We use the functionality and advantages of both components,” says the study’s lead author, Dr. Helge Hattermann, “The combination of the two unequal quantum systems could enable us to create a real quantum processor with superconducting quantum lattices, atomic quantum storage, and photonic qubits.” Qubits are – analogous to bits in conventional computing – the smallest unit of quantum signals.

The new hybrid system for future quantum processors and their networks forms a parallel with today’s technology, which is also a hybrid, as a look at your computer hardware shows: Calculations are made by microelectronic circuits; information is stored on magnetic media, and data is carried through fiber-optic cables via the internet. “Future quantum computers and their networks will operate on this analogy – requiring a hybrid approach and interdisciplinary research and development for full functionality,” Fortágh says.

Publication:
H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sárkány, R. Kleiner, D. Koelle, and J. Fortágh: Coupling ultracold atoms to a superconducting coplanar waveguide resonator. Nature Communications, DOI 10.1038/s41467-017-02439-7.

Contact:
Dr. Helge Hattermann
helge.hattermann[at]uni-tuebingen.de
Prof. Dr. József Fortágh
fortagh[at]uni-tuebingen.de
University of Tübingen
Faculty of Science
Institute of Physics
CQ Center for Quantum Science
Phone +49 7071 29-76270
http://www.physik.uni-tuebingen.de/fortagh

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>