Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning Down a Proton

15.04.2010
Researchers Develop Method to Describe Binding of Protons and Neutrons

A researcher at North Carolina State University has helped to develop a new method for describing the binding of protons and neutrons within nuclei. This method may improve scientists’ ability to predict and understand astrophysical reactions within stars.

When protons and neutrons bind, the process releases energy. This fusion energy is how stars burn. If scientists can determine where these particles are, what they are doing, and how they are binding, they will then be able to more accurately predict and understand the life cycles of stars.

NC State physicist Dr. Dean Lee and German colleagues Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meissner, set out to see if there was a more straightfoward approach to describing particle interactions than currently used.

Their results were published in the April 9 issue of Physical Review Letters.

“These particles can literally be anywhere,” Lee says, “so pinning them down is hard. However, we do know that there are hierarchies of attractions between particles and we were able to use these hierarchies to give us a framework for describing how the protons and neutrons could bind with one another. That hierarchy is known as effective field theory.”

Lee and his colleagues used a numerical lattice which took into account all of the possible positions of the particles within the nucleus and the corresponding interaction energies. They ran a supercomputer simulation for the elements helium-4, lithium-6 and carbon-12, and demonstrated that the results of those simulations were accurate.

“Currently the indications are that our effective field theory calculations should let us describe nuclei with 16 or fewer protons and neutrons,” Lee says. “But our ability to describe larger nuclei using this approach also looks promising.”

The Department of Physics is part of NC State’s College of Physical and Mathematical Sciences.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Pinning ProTon Supercomputer simulation carbon-12 helium-4 lithium-6 neutrons nuclei

More articles from Physics and Astronomy:

nachricht Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017
16.07.2019 | Universität Stuttgart

nachricht Robert Alfano team identifies new 'Majorana Photons'
16.07.2019 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>