Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists close in on a rare particle-decay process

05.06.2012
Underground experiment may unlock mysteries of the neutrino

In the biggest result of its kind in more than ten years, physicists have made the most sensitive measurements yet in a decades-long hunt for a hypothetical and rare process involving the radioactive decay of atomic nuclei.


The Enriched Xenon Observatory 200 (EXO-200) is a neutrino experiment housed 2150 feet below ground in a salt basin at the Waste Isolation Pilot Plant (WIPP). The subterranean location isolates it from cosmic rays and other sources of natural radioactivity. Credit: EXO/WIPP/SLAC


This large copper cylindrical vessel is the Enriched Xenon Observatory 200's (EXO-200) time projection chamber, the part of the detector that contains the liquid xenon, isotopically enriched in xenon-136. The photo shows the chamber being inserted into the cryostat, which keeps the experiment at extremely low temperatures. Credit: EXO

If discovered, the researchers say, this process could have profound implications for how scientists understand the fundamental laws of physics and help solve some of the universe's biggest mysteries—including why there is more matter than antimatter and, therefore, why regular matter like planets, stars, and humans exists at all.

The experiment, the Enriched Xenon Observatory 200 (EXO-200), is an international collaboration that includes the California Institute of Technology (Caltech) and is led by Stanford University and the SLAC National Accelerator Laboratory, a U.S. Department of Energy (DOE) National Laboratory.

The EXO-200 experiment has placed the most stringent constraints yet on the nature of a so-called neutrinoless double beta decay. In doing so, physicists have narrowed down the range of possible masses for the neutrino, a tiny uncharged particle that rarely interacts with anything, passing right through rock, people, and entire planets as it zips along at nearly the speed of light.

The collaboration, consisting of 80 researchers, has submitted a paper describing the results to the journal Physical Review Letters.

In a normal double beta decay, which was first observed in 1986, two neutrons in an unstable atomic nucleus turn into two protons; two electrons and two antineutrinos—the antimatter counterparts of neutrinos—are emitted in the process.

But physicists have suggested that two neutrons could also decay into two protons by emitting two electrons without producing any antineutrinos. "People have been looking for this process for a very long time," says Petr Vogel, senior research associate in physics, emeritus, at Caltech and a member of the EXO-200 team. "It would be a very fundamental discovery if someone actually observes it."

A neutrino is inevitably produced in a single beta decay. Therefore, the two neutrinos that are produced in a neutrinoless double beta decay must somehow cancel each other out. For that to happen, physicists say, a neutrino must be its own antiparticle, allowing one of the two neutrinos to act as an antineutrino and annihilate the other neutrino. That a neutrino can be its own antiparticle is not predicted by the Standard Model—the remarkably successful theory that describes how all elementary particles behave and interact.

If this neutrinoless process does indeed exist, physicists would be forced to revise the Standard Model.

The process also has implications for cosmology and the origin of matter, Vogel says. Right after the Big Bang, the universe had the same amount of matter as antimatter. Somehow, however, that balance was tipped, producing a slight surplus in matter that eventually led to the existence of all of the matter in the universe. The fact that the neutrino can be its own antiparticle might have played a key role in tipping that balance.

In the EXO-200 experiment, physicists monitor a copper cylinder filled with 200 kilograms of liquid xenon-136, an unstable isotope that, theoretically, can undergo neutrinoless double beta decay. Very sensitive detectors line the wall at both ends of the cylinder. To shield it from cosmic rays and other background radiation that may contaminate the signal of such a decay, the apparatus is buried deep underground in the DOE's Waste Isolation Pilot Plant in Carlsbad, New Mexico, where low-level radioactive waste is stored. The physicists then wait to see a signal.

The process, however, is very rare. In a normal double beta decay, half of a given sample would decay after 1021 years—a half-life roughly 100 billion times longer than the time that has elapsed since the Big Bang.

One of the goals of the experiment is to measure the half-life of the neutrinoless process (if it is discovered). In these first results, no signal for a neutrinoless double beta decay was detected in almost seven months' of data—and that non-detection allowed the researchers to rule out possible values for the half-life of the neutrinoless process. Indeed, seven months of finding nothing means that the half-life cannot be shorter than 1.6 × 1025 years, or a quadrillion times older than the age of the universe. With the value of the half-life pinned down, physicists can calculate the mass of a neutrino—another longstanding mystery. The new data suggest that a neutrino cannot be more massive than about 0.140 to 0.380 electron volts (eV, a unit of mass commonly used in particle physics); an electron, by contrast, is about 500,000 eV, or about 9 × 10-31 kilograms.

More than ten years ago, the collaboration behind the Heidelberg-Moscow Double Beta Decay Experiment controversially claimed to have discovered neutrinoless double beta decay using germanium-76 isotopes. But now, the EXO-200 researchers say, their new data makes it highly unlikely that those earlier results were valid.

The EXO-200 experiment, which started taking data last year, will continue its quest for the next several years.

The EXO collaboration involves scientists from SLAC, Stanford, the University of Alabama, Universität Bern, Caltech, Carleton University, Colorado State University, University of Illinois Urbana-Champaign, Indiana University, UC Irvine, Institute for Theoretical and Experimental Physics (Moscow), Laurentian University, the University of Maryland, the University of Massachusetts–Amherst, the University of Seoul, and the Technische Universität München. This research was supported by the DOE and the National Science Foundation in the United States, the Natural Sciences and Engineering Research Council in Canada, the Swiss National Science Foundation, and the Russian Foundation for Basic Research. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

Marcus Woo | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Big Bang Caltech Gates Foundation Laboratory Physicists SLAC cosmic ray

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>