Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists close in on a rare particle-decay process

05.06.2012
Underground experiment may unlock mysteries of the neutrino

In the biggest result of its kind in more than ten years, physicists have made the most sensitive measurements yet in a decades-long hunt for a hypothetical and rare process involving the radioactive decay of atomic nuclei.


The Enriched Xenon Observatory 200 (EXO-200) is a neutrino experiment housed 2150 feet below ground in a salt basin at the Waste Isolation Pilot Plant (WIPP). The subterranean location isolates it from cosmic rays and other sources of natural radioactivity. Credit: EXO/WIPP/SLAC


This large copper cylindrical vessel is the Enriched Xenon Observatory 200's (EXO-200) time projection chamber, the part of the detector that contains the liquid xenon, isotopically enriched in xenon-136. The photo shows the chamber being inserted into the cryostat, which keeps the experiment at extremely low temperatures. Credit: EXO

If discovered, the researchers say, this process could have profound implications for how scientists understand the fundamental laws of physics and help solve some of the universe's biggest mysteries—including why there is more matter than antimatter and, therefore, why regular matter like planets, stars, and humans exists at all.

The experiment, the Enriched Xenon Observatory 200 (EXO-200), is an international collaboration that includes the California Institute of Technology (Caltech) and is led by Stanford University and the SLAC National Accelerator Laboratory, a U.S. Department of Energy (DOE) National Laboratory.

The EXO-200 experiment has placed the most stringent constraints yet on the nature of a so-called neutrinoless double beta decay. In doing so, physicists have narrowed down the range of possible masses for the neutrino, a tiny uncharged particle that rarely interacts with anything, passing right through rock, people, and entire planets as it zips along at nearly the speed of light.

The collaboration, consisting of 80 researchers, has submitted a paper describing the results to the journal Physical Review Letters.

In a normal double beta decay, which was first observed in 1986, two neutrons in an unstable atomic nucleus turn into two protons; two electrons and two antineutrinos—the antimatter counterparts of neutrinos—are emitted in the process.

But physicists have suggested that two neutrons could also decay into two protons by emitting two electrons without producing any antineutrinos. "People have been looking for this process for a very long time," says Petr Vogel, senior research associate in physics, emeritus, at Caltech and a member of the EXO-200 team. "It would be a very fundamental discovery if someone actually observes it."

A neutrino is inevitably produced in a single beta decay. Therefore, the two neutrinos that are produced in a neutrinoless double beta decay must somehow cancel each other out. For that to happen, physicists say, a neutrino must be its own antiparticle, allowing one of the two neutrinos to act as an antineutrino and annihilate the other neutrino. That a neutrino can be its own antiparticle is not predicted by the Standard Model—the remarkably successful theory that describes how all elementary particles behave and interact.

If this neutrinoless process does indeed exist, physicists would be forced to revise the Standard Model.

The process also has implications for cosmology and the origin of matter, Vogel says. Right after the Big Bang, the universe had the same amount of matter as antimatter. Somehow, however, that balance was tipped, producing a slight surplus in matter that eventually led to the existence of all of the matter in the universe. The fact that the neutrino can be its own antiparticle might have played a key role in tipping that balance.

In the EXO-200 experiment, physicists monitor a copper cylinder filled with 200 kilograms of liquid xenon-136, an unstable isotope that, theoretically, can undergo neutrinoless double beta decay. Very sensitive detectors line the wall at both ends of the cylinder. To shield it from cosmic rays and other background radiation that may contaminate the signal of such a decay, the apparatus is buried deep underground in the DOE's Waste Isolation Pilot Plant in Carlsbad, New Mexico, where low-level radioactive waste is stored. The physicists then wait to see a signal.

The process, however, is very rare. In a normal double beta decay, half of a given sample would decay after 1021 years—a half-life roughly 100 billion times longer than the time that has elapsed since the Big Bang.

One of the goals of the experiment is to measure the half-life of the neutrinoless process (if it is discovered). In these first results, no signal for a neutrinoless double beta decay was detected in almost seven months' of data—and that non-detection allowed the researchers to rule out possible values for the half-life of the neutrinoless process. Indeed, seven months of finding nothing means that the half-life cannot be shorter than 1.6 × 1025 years, or a quadrillion times older than the age of the universe. With the value of the half-life pinned down, physicists can calculate the mass of a neutrino—another longstanding mystery. The new data suggest that a neutrino cannot be more massive than about 0.140 to 0.380 electron volts (eV, a unit of mass commonly used in particle physics); an electron, by contrast, is about 500,000 eV, or about 9 × 10-31 kilograms.

More than ten years ago, the collaboration behind the Heidelberg-Moscow Double Beta Decay Experiment controversially claimed to have discovered neutrinoless double beta decay using germanium-76 isotopes. But now, the EXO-200 researchers say, their new data makes it highly unlikely that those earlier results were valid.

The EXO-200 experiment, which started taking data last year, will continue its quest for the next several years.

The EXO collaboration involves scientists from SLAC, Stanford, the University of Alabama, Universität Bern, Caltech, Carleton University, Colorado State University, University of Illinois Urbana-Champaign, Indiana University, UC Irvine, Institute for Theoretical and Experimental Physics (Moscow), Laurentian University, the University of Maryland, the University of Massachusetts–Amherst, the University of Seoul, and the Technische Universität München. This research was supported by the DOE and the National Science Foundation in the United States, the Natural Sciences and Engineering Research Council in Canada, the Swiss National Science Foundation, and the Russian Foundation for Basic Research. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

Marcus Woo | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Big Bang Caltech Gates Foundation Laboratory Physicists SLAC cosmic ray

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>