Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018

A University of Manchester PhD student has developed a prototype flexible heat shield for spacecraft that could reduce the cost of space travel and even aid future space missions to Mars.

Heat shields are essentially used as the brakes to stop spacecraft burning up and crashing on entry and re-entry into a planet's atmosphere. This design is the first in the world to utilise centrifugal forces that stiffen lightweight materials to prevent burnup.


A University of Manchester PhD student has developed a prototype flexible heat shield for spacecraft that could reduce the cost of space travel and even aid future space missions to Mars.

Credit: Rui Wu, The University of Manchester

Current spacecraft heat shield methods include huge inflatables and mechanically deployed structures that are often heavy and complicated to use.

Rui Wu, from Manchester's School of Mechanical, Aerospace and Civil Engineering, says as well as being lightweight in design is prototype is also "self-regulating". This means there is no need for any additional machinery, reducing the weight of spacecraft even further and allowing for low-cost scientific research and recovery of rocket parts.

He says: "Spacecraft for future missions must be larger and heavier than ever before, meaning that heat shields will become increasingly too large to manage."

To address this demand Wu and his team have developed a flexible heat shield that is shaped like a skirt and spins like a sycamore seed. Planets with atmospheres, such as Earth and Mars, allow spacecraft to utilise aerodynamic drag to slow down and the prototype's design uses this to enable atmospheric entry.

"This is similar to high board diving, where the drag from water decelerates your body before you reach the bottom of the swimming pool," Wu explains.

The fast entry into Earth's atmosphere generates so much heat - over 10,000 ?C - that the air around the spacecraft can burn into plasma. For safe atmospheric entry, spacecraft need a front end, or shield, that tolerates high heat as well as an aerodynamic shape that generates drag.

However, Unlike Earth, the Martian atmosphere is very thin. "If Earth re-entry is like diving into thick honey, Mars entry would be like diving into water," Wu says.

To carry heavy equipment and astronauts, a high drag area is needed. When entering Earth's or Mars' atmospheres, spacecraft require highly designed shields to avoid burnup, generate drag, and support heavy loads.

Wu's design potentially solves both issues.

The prototype is made of a flexible material that allows for easy storage on board spacecraft. This material, while foldable, is strong and has a high temperature tolerance.

The shield is also stitched along a special pattern that allows it to spin up during flight, inducing centrifugal force.

Wu sees his design helping with space-based scientific research and rescue missions in the future. He adds: "More and more research is being conducted in space, but this is usually very expensive and the equipment has to share a ride with other vehicles.

"Since this prototype is lightweight and flexible enough for use on smaller satellites, research could be made easier and cheaper. The heat shield would also help save cost in recovery missions, as its high induced drag reduces the amount of fuel burned upon re-entry."

###

Notes to Editor

For media enquiries please contact Jordan Kenny on 0161 275 8257 or jordan.kenny@manchester.ac.uk

Download images https://www.dropbox.com/s/z0nhs21rkn5nmxb/photos_27Jul.zip?dl=0

Videos

* Raw on-board video: https://www.youtube.com/watch?v=L5cmUipPwm8

* Computer processed onboard video: https://www.youtube.com/watch?v=OHpOBQcd6dA

* Another test video: https://youtu.be/9UFUBVUvVEc

* A preliminary demonstrator for a mechanically deployed 1st stage, which unpacks the shield and enlarge the initial diameter to assist deployment: https://www.youtube.com/watch?v=XsMM1L9nss0

Reference: The paper 'Flexible heat shields deployed by centrifugal force the journal was published in the journal Acta Astronautica Rui Wua, Peter C.E.Roberts a Constantinos Soutis (b) Carl Diver (a) School of Mechanical, Aerospace and Civil Engineering, UK

(b) The University of Manchester Aerospace Research Institute, UK https://doi.org/10.1016/j.actaastro.2018.06.021

About The University of Manchester

The University of Manchester, a member of the prestigious Russell Group, is the UK's largest single-site university with more than 40,000 students - including more than 10,000 from overseas.It is consistently ranked among the world's elite for graduate employability.

The University is also one of the country's major research institutions, rated fifth in the UK in terms of 'research power' (REF 2014). World-class research is carried out across a diverse range of fields including cancer, advanced materials, global inequalities, energy and industrial biotechnology.

No fewer than 25 Nobel laureates have either worked or studied here.

It is the only UK university to have social responsibility among its core strategic objectives, with staff and students alike dedicated to making a positive difference in communities around the world.

Manchester is ranked 29th in the world in the QS World University Rankings 2018 and 6th in the UK.

Visit http://www.manchester.ac.uk for further information.

Facts and figures: http://www.manchester.ac.uk/discover/facts-figures/

Research Beacons: http://www.manchester.ac.uk/research/beacons/

News and media contacts: http://www.manchester.ac.uk/discover/news/

Jordan Kenny | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.actaastro.2018.06.021

More articles from Physics and Astronomy:

nachricht For UW physicists, the 2-D form of tungsten ditelluride is full of surprises
10.08.2018 | University of Washington

nachricht Slow, but efficient
09.08.2018 | Forschungsverbund Berlin e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

SERSitive: New substrates make it possible to routinely detect one molecule in a million

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>