Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the African Sky

02.12.2014

A new receiver project of MPIfR in Bonn has received full funding by MPG. The frequency range 1.6 to 3.5 GHz can only be observed under significant sensitivity losses in Effelsberg due to man-made radio emission.

Thus the MeerKAT observatory in South Africa, has been chosen as a host for this receiver system. MeerKAT will be the most sensitive observatory of the southern hemisphere in centimetre wavelengths. Thanks to its unique location, MeerKAT is hardly influenced by interference. The 11 Million Euro project will not only grant Max Planck scientists access to a world-class facility but also extend the frequency range for all scientists and thus empower MeerKATs scientific potential.


Radio image at 408 MHz with overlaid pulsar positions (black dots). The new receivers will search the area shown by the black box for unusual pulsar systems, laboratories for fundamental physics.

redits: MPIfR, Haslam et al. 1982 (Radio Image); MPIfR, Cherry Ng (pulsar positions)


MeerKAT antenna and the night sky.

SKA South Africa (Picture taken in March 2014)

Radio astronomy provides an independent view of the cosmos. It allows the study of objects and processes that are otherwise not accessible, and enables the study of a wide range of questions in fundamental physics and astrophysics.

The discovery space is mostly limited by the sensitivity of the radio telescopes, but other factors like sky access, time and frequency resolution, throughput (or “survey speed”) and complementarity to existing facilities, are hugely important factors. Currently, major efforts are underway to make progress on all these factors. An upfront development is provided by the MeerKAT observatory in South Africa. When completed it will already be a world-class facility in stand-alone mode.

MeerKAT will even be more sensitive than the largest fully-steerable radio telescopes in the Northern hemisphere, the 100-m radio telescope at Effelsberg and the Green Bank Telescope in West Virginia. In addition, it will provide a spatial resolution comparable to an 8 km diameter telescope. The science potential of MeerKAT is therefore enormous.

“The MeerKAT receiver project at our institute provides a receiving system that is finely tuned to the science interests of Max Planck scientists”, says Gundolf Wieching, head of the Electronics division at MPIfR where the new receiver will be built. “This will allow us to exploit this formidable new instrument and to bring Max Planck scientists to an optimal position to harness other future facilities.”

The funded receiver for a frequency range from 1.6 to 3.5 GHz will enable science that falls into the core interests of the MPIfR. “Our research interests include fundamental physics with tests of theories of gravity and gravitational wave detection by means of pulsar observations”, states Michael Kramer, Director at MPIfR and Head of its Fundamental Physics research department.

“The project is actually expected to do transformational science on pulsars and other areas of astronomy.” Other areas include the exploration of the dynamic radio sky, for example with the detection of fast cosmological radio bursts, and also highly sensitive molecular spectroscopy of the interstellar medium or high-resolution imaging of radio sources using Very Long Baseline Interferometry. Each of these science topics alone makes the exploitation of MeerKAT extremely desirable, but together they provide the most compelling background for an excellent positioning of Max Planck scientists in this highly active research field.

In addition to providing the frontend, the complete project also includes the design and the construction of a state-of-the-art digital backend system which will turn MeerKAT into a discovery machine for pulsars and other time-domain phenomena. The receiver system will be designed and constructed by the MPIfR in collaboration with colleagues from the Universities of Manchester and Oxford “The investment is an endorsement of the excellence of the MeerKAT and the South African team which designed and is building it”, concludes Bernie Fanaroff, Director of the SKA South Africa project. “We welcome the strong and growing collaboration between South African and German scientists in astronomy.”

The MPIfR MeerKAT Receiver will provide a receiving system, i.e. a frontend plus a backend system for time-domain processing. The detection frequency covers a range from 1.6 to 3.5 GHz, it is a dual polarization system with an analogue to digital converter stability below one pico second (10-12 s, this is equivalent to a light travel distance less than 0.3 mm)

The continuous data rate of 5.5 TeraBit/sec (1 TeraBit = 1012 Bit) is equivalent to the content of 147 DVDs per second or 0.5 million DVDs per hour. With such a huge amount of data they have to be reduced online, requiring a calculation power of several PetaOps (1015 operations per second). These highly demanding requirements will lead to new technological developments also useful for future instrumentations beyond the scope of radio astronomy.

MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. It will be the largest and most sensitive radio telescope in the Southern hemisphere until its integration into the Square Kilometer Array (SKA) in the middle of the next decade. MeerKAT will consist of 64 13.5-m dishes, each with an offset-Gregorian configuration, designed by the German VERTEX company. Such configuration provides an unblocked aperture for increased sensitivity but also facilitating optical, imaging quality and good rejection of unwanted radio frequency interference from satellites and terrestrial transmitters. When completed, MeerKAT will be nearly 5-times more sensitive than the 64-m Parkes radio telescope, the largest radio telescope in the Southern Hemisphere now.

Contact:

Dr. Gundolf Wieching,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-175
E-mail: wieching@mpifr-bonn.mpg.de

Prof. Dr. Michael Kramer,
Director and Head of Research Department „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de


Weitere Informationen:

http://www.mpifr-bonn.mpg.de/announcements/2014/6

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>