Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing live phase transition - watching the atoms race

31.03.2017

By comparison, a blink lasts a lifetime – atoms can rearrange themselves within one 350 quadrillionths of a second. As reported in the latest issue of the prestigious journal Nature, scientists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE), together with their colleagues from the University of Paderborn, have been able to observe the movement of a one-dimensional material in real-time. Their research confirms that the acceleration of the atoms could leave even a Porsche standing.

Everything that surrounds us in our everyday life is three-dimensional, no matter how small: salt crystals, pollen, dust – even aluminium foil has a certain thickness. The first truly two-dimensional material graphene, was first discovered just 15 years ago, and ever since it has been used in applications such as transparent displays due to its outstanding electronic properties.


Electron beam (blue) which probes the structural change of the indium atom chains (red balls) upon excitation through a femtosecond laserpuls (violet). (Source: Dr. Andreas Lücke, Universität Paderborn)

Now, scientists are recognising the potential of one-dimensional systems: systems comprising a string of atoms lined up like pearls on a necklace. These wires, the thinnest in the world, are unstable, a fascinating effect which is not at all well investigated – a fact that Dr. Tim Frigge, working within Prof. Michael Horn-von Hoegen’s research group, set out to address.

Frigge’s sample consisted of two single chains of indium atoms on a silicon substrate. At temperatures above approximately -140°C, the atoms form long chains, making the system metallic and enabling the conduction of electricity. Below this temperature, however, the atoms slip together in pairs and form hexagons, turning the system into an insulator.

This transition takes place at lightning-speed, within just 350 femtoseconds. In order to study it, the researchers had to induce the process artificially, doing so several million times at a rate of 5000 times per second. In order to achieve this, they stimulated the material with an ultrashort laser pulse, which, despite the icy temperatures of around -243°C, triggered the transition into the chain-shaped metallic state that otherwise only occurs at higher temperatures. The system subsequently reverted back to its non-metallic state one atom after the other, like a row of falling dominos.

In order to observe this transition, the physicists shot an electron beam across their sample, using its diffraction to determine the position of the atoms. Taking such a diffraction image every 50 femtoseconds results in a kind of ‘molecular movie’: a film that shows the path of the atoms over the sample surface – ‘just like in a flip-book,’ Frigge explains.

The researchers’ atomic level film represents the first step towards understanding – and, if possible, controlling – one-dimensional systems. It is worth noting, too, that as well as the path of the atoms, their speed can also be measured: over the short distance, the atoms hit speeds of around 100 km/h – and this in tiny fractions of a second, boasting acceleration trillions of times higher than that of a Porsche.

Original publication: Frigge et al., Optically excited strutural transition in atomic wires at the quantum limit, Nature, doi: 10.1038/nature21432

Further information:
Prof. Dr. Michael Horn-von Hoegen, Physics Faculty, 0203 379-1438, horn-von-hoegen@uni-due.de

Editor: Birte Vierjahn, 0203/ 379-8176, birte.vierjahn@uni-due.de

Ulrike Bohnsack | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-duisburg-essen.de/

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>