Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST Clock Experiment Demonstrates That Your Head is Older Than Your Feet

Scientists have long known that time passes faster at higher elevations—a curious aspect of Einstein’s theories of relativity that previously has been measured by comparing clocks on the Earth’s surface and a high-flying rocket.

Now, physicists at the National Institute of Standards and Technology (NIST) have measured this effect at a more down-to-earth scale of 33 centimeters, or about 1 foot, demonstrating, for instance, that you age faster when you stand a couple of steps higher on a staircase.

Described in the Sept. 24 issue of Science,* the difference is much too small for humans to perceive directly—adding up to approximately 90 billionths of a second over a 79-year lifetime—but may provide practical applications in geophysics and other fields.

The NIST researchers also observed another aspect of relativity—that time passes more slowly when you move faster—at speeds comparable to a car travelling about 20 miles per hour, a more comprehensible scale than previous measurements made using jet aircraft.

NIST scientists performed the new “time dilation” experiments by comparing operations of a pair of the world’s best experimental atomic clocks. The nearly identical clocks are each based on the “ticking” of a single aluminum ion as it vibrates between two energy levels over a million billion times per second. One clock keeps time to within 1 second in about 3.7 billion years (see NIST announcement from Feb. 4, 2010, “NIST’s Second ‘Quantum Logic Clock’ Based on Aluminum Ion is Now World’s Most Precise Clock” at and the other is close behind in performance. The clocks are precise and stable enough to reveal slight differences that could not be seen until now.

The NIST experiments test two predictions of Einstein’s theories of relativity. First, when two clocks are subjected to unequal gravitational forces due to their different elevations above the surface of the Earth, the higher clock—experiencing a smaller gravitational force—runs faster. Second, when an observer is moving, a stationary clock’s tick appears to last longer, so the clock appears to run slow. Scientists refer to this as the “twin paradox,” in which a twin sibling who travels on a fast-moving rocket ship would return home younger than the other twin.

In one set of experiments, scientists raised one of the clocks by jacking up the laser table to a height one-third of a meter (about a foot) above the second clock. Sure enough, the higher clock ran at a slightly faster rate than the lower clock, exactly as predicted.

The second set of experiments examined the effects of altering the physical motion of the ion in one clock. The ions are almost completely motionless during normal clock operations. NIST scientists tweaked the one ion so that it gyrated back and forth at speeds equivalent to several meters per second. That clock ticked at a slightly slower rate than the second clock, as predicted by relativity.

Such comparisons of super-precise clocks eventually may be useful in geodesy, the science of measuring the Earth and its gravitational field, with applications in geophysics and hydrology, and possibly in space-based tests of fundamental physics theories, suggests physicist Till Rosenband, leader of NIST’s aluminum ion clock team.

The research was supported in part by the Office of Naval Research. For more details, see the NIST Sept. 23, 2010, announcement, “NIST Pair of Aluminum Atomic Clocks Reveal Einstein’s Relativity at a Personal Scale” at

* C.W. Chou, D.B. Hume, T. Rosenband and D.J. Wineland. Optical clocks and relativity. Science. Sept. 24, 2010

Laura Ost | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>