Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA'S NPP satellite acquires first ATMS measurements

11.11.2011
The Advanced Technology Microwave Sounder (ATMS) on board NASA's newest Earth-observing satellite, NPP, acquired its first measurements on November 8, 2011.

The image shows the ATMS channel 18 data, which measures water vapor in the lower atmosphere. Tropical Storm Sean is visible in the data, as the patch of blue, in the Atlantic off the coast of the Southeastern United States. The data were processed at the NOAA Satellite Operations Facility (NSOF) in Suitland, Md.


This global image shows the ATMS channel 18-microwave antenna temperature at 183.3 GHz on Nov. 8, 2011. This channel measures atmospheric water vapor; note that Tropical Storm Sean is visible in the data, as the blue patch, in the Atlantic off the coast of the Southeastern United States. The ATMS data were processed at the NOAA Satellite Operations Facility (NSOF) in Suitland, Md. Credit: NASA/NOAA

The ATMS is one of five instruments on board the National Polar-orbiting Operational Environmental Satellite System Preparatory Project, or NPP, that launched from Vandenberg Air Force Base, Calif., on October 28. Since then, NPP has successfully completed all spacecraft commissioning activities and powered on all instruments. In the next few weeks, all instruments will be commissioned and NPP will be sending science data from the four remaining instruments by mid-December.

A passive microwave radiometer, the ATMS instrument can collect data even when it is cloudy. Paired with the Cross-track Infrared Sounder (CrIS), also aboard NPP, they will produce global sets of high-resolution temperature and moisture profiles that are used for forecasting and studying weather.

"NPP is rock solid," stated Ken Schwer, NPP project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. "The satellite has performed extremely well during the checkout maneuvers and is in the expert hands of the mission operations team at NSOF."

During the commissioning activities, which were completed November 5, the NPP spacecraft subsystems were successfully tested, including command and control, propulsion and communications. NPP spacecraft and instrument data is sent from the spacecraft to the ground station in Svalbard, Norway and then to the NSOF.

In addition to the ATMS and the CrIS instruments, NPP carries 3 more state-of-the-art sensors that will provide critical information concerning long-term climate patterns and will help meteorologists improve short-term weather forecasts. During the satellite's five-year life, the mission will extend more than 30 key long-term datasets NASA has been tracking, including measurements of the ozone layer, and land and ice cover.

"NPP data will improve our forecast skills out to 5 to 7 days in advance of extreme weather events, including hurricanes, and severe weather outbreaks," said Dr. Louis Uccellini, director of NOAA's National Centers for Environmental Prediction. "With NPP, our goal is to make the accurate forecasts achieved for this year's events even better in the future."

NPP serves as a bridge mission between NASA's Earth Observing System (EOS) of satellites and the next-generation Joint Polar Satellite System, a National Oceanic and Atmospheric Administration (NOAA) program that will also collect weather and climate data.

The NPP mission is managed by NASA's Goddard Space Flight Center in Greenbelt, Md., for the Earth Science Division of the Science Mission Directorate at NASA Headquarters in Washington. The Joint Polar Satellite System program provides the NPP ground system. NOAA will provide operational support for the mission.

For more information about NPP, visit:
http://www.nasa.gov/npp

Cynthia O'Carroll | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/npp

More articles from Physics and Astronomy:

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

nachricht Creating miracles with polymeric fibers
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>