Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Missing link’ galaxies discovered

25.11.2008
Astronomers at The University of Nottingham have identified a type of galaxy that could be the missing link in our understanding of galaxy evolution.

The STAGES study led by the University’s Centre for Astronomy and Particle Theory examines galaxy evolution using images from the Hubble Space Telescope.

A separate project — Galaxy Zoo — uses volunteers from the general public to classify galaxies. Both teams have identified a population of unusual red spiral galaxies that are setting out on the road to retirement after a lifetime of forming stars.

Astronomers place most normal galaxies into two camps according to their visual appearance: either disk-like systems like our own Milky Way, or round, rugby-ball shaped collections of stars known as ellipticals. In most cases, a galaxy's shape matches its colour; spiral galaxies appear blue because they are still vigorously forming hot young stars. Elliptical galaxies, on the other hand, are mostly old, dead and red, and tend to cluster together in crowded regions of space.

The Galaxy Zoo team examined the connection between the shapes and colours of over a million galaxies using images from the largest ever survey of the local universe — the Sloan Digital Sky Survey — and the help of hundreds of thousands of volunteers. A key ingredient to their success was reliably classifying the appearance of galaxies by actually looking at them, rather than relying on error-prone computer measurements. They found that many of the red galaxies in crowded regions are actually spiral galaxies, bucking the trend for red galaxies to be elliptical in shape.

Dr Steven Bamford, a Science and Technology Facilities Council (STFC) postdoctoral researcher at The University of Nottingham, led the Galaxy Zoo study. He said: “In order to have spiral arms, they must have been normal, blue, spiral galaxies up until fairly recently. But for some reason their star formation has been stopped, and they have turned red. Whatever caused them to stop forming stars can't have been particularly violent, or it would have destroyed the delicate spiral pattern.”

The Galaxy Zoo team concludes that a more subtle process must be at work, one that kills off star formation but does not disrupt the overall shape of the galaxy.

While Galaxy Zoo looked at the gross properties of millions of galaxies across a large chunk of sky, the STAGES project took a complementary approach by examining in detail just the sort of neighbourhoods where these transformations are expected to occur.

The team discovered that, despite their colour, the red spirals are actually hiding star formation behind a shroud of dust. Invisible to our (or Hubble's) eye, this star formation is only detectable in the infrared part of the spectrum — radiation emitted from the galaxies at wavelengths longer than visible light.

When observations from both projects are bought together, the picture that emerges is a gentle one. The star formation in blue spiral galaxies is gradually shut off and hidden behind dust, before petering out to form smooth "lenticular" (lens-shaped) red galaxies with no trace of spiral arms. To go further and transform the galaxy into an elliptical shape would require more violent mechanisms, such as the collision of galaxies.

Location is key to galaxy development. The red spirals are found primarily on the outskirts of crowded regions of space where galaxies cluster together. As a blue galaxy is drawn in by gravity from the rural regions to the suburbs, an interaction with its environment causes a slow-down in star formation. The closer in a galaxy is, the more it is affected.

But if environment decides where the process occurs, the mass of the galaxy decides how quickly it takes place. Because both STAGES and Galaxy Zoo looked at such large numbers of galaxies, they were able to further subdivide them according to how much they weighed. Both groups found that galaxy mass is also important.

Professor Bob Nichol of Portsmouth University, a Galaxy Zoo team member, explains: "Just as a heavyweight fighter can withstand a blow that would bring a normal person to his knees; a big galaxy is more resistant to being messed around by its local environment. Therefore, the red spirals that we see tend to be the larger galaxies — presumably because the smaller ones are transformed more quickly."

Meghan Gray, STFC Advanced Fellow at The University of Nottingham and leader of the STAGES survey, added: "Our two projects have approached the problem from very different directions, and it is gratifying to see that we each provide independent pieces of the puzzle pointing to the same conclusion."

Dr Christian Wolf, an STFC Advanced Research Fellow at the University of Oxford, trained the Hubble Space Telescope on a region of space crowded with galaxies known as the A901/902 supercluster for the STAGES project. Like the Galaxy Zoo team, Dr Wolf also uncovered a surprisingly large population of spiral galaxies in the supercluster that are red in colour.

Dr Wolf said: "For the STAGES galaxies, the Spitzer Space Telescope provided us with additional images at infrared wavelengths. With them, we were able to go further and peer through the dust to find the missing piece of the puzzle". Within the supercluster, Dr Wolf discovered that the red spirals were hiding low levels of hidden star formation, despite their otherwise lifeless appearance in visible light.

The next step for both teams is to find out exactly what shuts off the star formation, by looking inside the galaxies themselves. They suspect that behind the slow demise of galaxies is a process known as strangulation, in which a galaxy's fuel supply is stripped away as it encounters the crowd. Starved of the raw material needed to form new stars, it will slowly change colour from blue to red as its existing stars age.

The STAGES team's findings on the properties of red spiral galaxies will appear online on November 25 2008 at http://arxiv.org/list/astro-ph/new. The Galaxy Zoo results are available online at http://arxiv.org/abs/0805.2612

Tara de Cozar | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>