Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Offers Control of Strain on Graphene Membranes

04.04.2012
First controllable use of scanning tunneling microscopy on freestanding graphene

Graphene could be the superhero of materials – it’s light, strong and conducts heat and electricity effectively, which makes it a great material for potential use in all kinds of electronics. And because it’s made from carbon atoms, graphene is cheap and plentiful. Its electric and mechanical properties also affect one another in unique ways. But before freestanding graphene can live up to its potential, scientists need to be able to control these properties.

A group of physicists from the University of Arkansas and other institutions have developed a technique that allows them to control the mechanical property, or strain, on freestanding graphene, sheets of carbon one-atom thick suspended over the tops of tiny squares of copper. By controlling the strain on freestanding graphene, they also can control other properties of this important material.

“If you subject graphene to strain, you change its electronic properties,” said physics professor Salvador Barraza-Lopez. Strain on freestanding graphene causes the material to behave as if it is in a magnetic field, even though no magnets are present, a property that scientists will want to exploit -- if they can control the mechanical strain.

To control the mechanical strain, University of Arkansas researchers developed a new experimental approach. Physicists Peng Xu, Paul Thibado and students in Thibado’s group examined freestanding graphene membranes stretched over thin square “crucibles,” or meshes, of copper. They performed scanning tunneling microscopy with a constant current to study the surface of the graphene membranes. This type of microscopy uses a small electron beam to create a contour map of the surface. To keep the current constant, researchers change the voltage as the scanning tunneling microscope tip moves up and down, and the researchers found that this causes the freestanding graphene membrane to change shape.

“The membrane is trying to touch the tip,” Barraza-Lopez said. They discovered that the electric charge between the tip and the membrane influences the position and shape of the membrane. So by changing the tip voltage, the scientists controlled the strain on the membrane. This control becomes important for controlling the pseudo-magnetic properties of graphene.

In conjunction with the experiments, Barraza-Lopez, Yurong Yang of the University of Arkansas and Nanjing University, and Laurent Bellaiche of the University of Arkansas examined theoretical systems involving graphene membranes to better understand this new-found ability to control the strain created by the new technique. They verified the amount of strain on these theoretical systems and simulated the location of the scanning tunneling microscopy tip in relation to the membrane. While doing so, they discovered that the interaction of the membrane and tip depends upon the tip’s location on the freestanding graphene. This allows scientists to calculate the pseudo-magnetic field for a given voltage and strain.

“If you know the strain, you can use theory and compute how big the pseudo-magnetic field may be,” said Barraza-Lopez. They found that because of the boundaries created by the square copper crucible, the pseudo-magnetic field swings back and forth between positive and negative values, so scientists are reporting the maximum value for the field instead of a constant value.

“If you were able to make the crucibles triangular, you would be closer to having non-oscillating fields,” Barraza-Lopez said. “This would bring us closer to using this pseudo-magnetic property of graphene membranes in a controlled way.”

The researchers report their findings in Physical Review B Rapid Communications.
Full details of this work are available online (PRB 85, 121406(R) (2012)). Scientists involved in the research are from the University of Arkansas, Nanjing University, École Centrale Paris, Quingdao University and Missouri State University.
CONTACTS:
Salvador Barraza-Lopez, physics
J. William Fulbright College of Arts and Sciences
479-575-5933, sbarraza@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Membranes carbon atom graphene magnetic field method strain

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>