Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating Electron Spins Without Loss of Information

19.07.2017

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled to its motion, i.e. its orbit within the chip. This spin-orbit coupling allows targeted manipulation of the electron spin by an external electric field, but it also causes the spin’s orientation to decay, which leads to a loss of information.


Electrons rotate on their way through the chip in a spiral pattern. Adjustments in the voltage lead to changes in this pattern and thus the orientation of the spin can be controlled.

University of Basel, Department of Physics

In an international collaboration with colleagues from the US and Brazil, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute, headed by Professor Dominik Zumbühl, have developed a new method that allows for targeted spin manipulation without the accompanying decay.

Controlling spins over long distances

The scientists have developed a chip on which an electron rotates uniformly in its orbit through the material without decay of the spin. The spin’s orientation follows a spiral pattern similar to a helix. If the voltages applied by two gate electrodes change, it affects the wavelength of the helix; the orientation of the spin can thus be influenced by a voltage change.

The Rashba and Dresselhaus fields predominantly determine the helical movement of the spin. In the experiment described above, the Dresselhaus and Rashba fields can be kept at the same level, while the overall strength of the two fields can simultaneously be controlled: in this way, the spin’s decay can be suppressed.

This allows the researchers to use voltages to adjust the spin’s orientation over distances greater than 20 micrometers, which is a particularly large distance on a chip and corresponds to many spin rotations. Spin information can thus be transmitted e.g. between different quantum bits.

Adjusting the fields with electrical voltages

This method is only possible because, as this work showed experimentally for the first time, both the Rashba field and the Dresselhaus field can be adjusted with electrical voltages. Although this was predicted more than 20 years ago in a theoretical study, it has only now been possible to demonstrate it thanks to a newly-developed measurement method based on quantum interference effects at low temperatures near absolute zero. It is expected, however, that the helix will also be able to be controlled with voltages at higher temperatures and even at room temperature.

Basis for further developments

“With this method, we can not only influence the spin orientation in situ but also control the transfer of electron spins over longer distances without losses,” says Zumbühl. The outstanding collaboration with colleagues from the University of São Paulo, the University of California and the University of Chicago provides the basis for a whole new generation of devices that build on spin-based electronics and create prospects for further experimental work.

Original article

Florian Dettwiler, Jiyong Fu, Shawn Mack, Pirmin J. Weigele, J. Carlos Egues, David D. Awschalom, and Dominik M. Zumbühl
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Physical Review X (2017), doi: 10.1103/PhysRevX.7.031010

Further information

Professor Dominik Zumbühl, University of Basel, Department of Physics, tel.: +41 61 207 36 93, email: dominik.zumbuhl@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Manipulating-Electron-Spi...

Olivia Poisson | Universität Basel

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>