Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a layer cake with atomic precision

15.10.2012
In a report published in Nature Physics, a group led Dr Leonid Ponomarenko and Nobel prize-winner Professor Andre Geim has assembled individual atomic layers on top of each other in a desired sequence.

The team used individual one-atom-thick crystals to construct a multilayer cake that works as a nanoscale electric transformer.

Graphene, isolated for the first time at The University of Manchester in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to drug delivery and computer chips.

It has the potential to replace existing materials, such as silicon, but the Manchester researchers believe it could truly find its place with new devices and materials yet to be invented.

In the nanoscale transformer, electrons moving in one metallic layer pull electrons in the second metallic layer by using their local electric fields. To operate on this principle, the metallic layers need to be insulated electrically from each other but separated by no more than a few interatomic distances, a giant leap from the existing nanotechnologies.

These new structures could pave the way for a new range of complex and detailed electronic and photonic devices which no other existing material could make, which include various novel architectures for transistors and detectors.

The scientists used graphene as a one-atom-thick conductive plane while just four atomic layers of boron nitride served as an electrical insulator.

The researchers started with extracting individual atomic planes from bulk graphite and boron nitride by using the same technique that led to the Nobel Prize for graphene, a single atomic layer of carbon. Then, they used advanced nanotechnology to mechanically assemble the crystallites one by one, in a Lego style, into a crystal with the desired sequence of planes.

The nano-transformer was assembled by Dr Roman Gorbachev, of The University of Manchester, who described the required skills. He said: "Every Russian and many in the West know The Tale of the Clockwork Steel Flea.

"It could only be seen through the most powerful microscope but still danced and even had tiny horseshoes. Our atomic-scale Lego perhaps is the next step of craftsmanship".

Professor Geim added: "The work proves that complex devices with various functionalities can be constructed plane by plane with atomic precision.

"There is a whole library of atomically-thin materials. By combining them, it is possible to create principally new materials that don't exist in nature. This avenue promises to become even more exciting than graphene itself."

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>