Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes the giant freak wave “stable”: Researchers develop new statistical model

17.06.2010
Physical Review Letters: modelling non-linear giant waves

The dreaded giant freak wave that can appear on the open sea out of nowhere, can now for the first time be theoretically calculated and modelled: researchers at the Ruhr- Universität Bochum and the University of Umeå, Sweden have developed a new statistical model for non-linear, interacting waves in computer simulations.

It explains how the water-wave system evolves, behaves and, above all, how it stabilises itself. The model is also suitable for the calculation of other “extreme occurrences” - for example on the stock market - or more complex phenomena in plasma physics. Bochum’s physicist Prof. Padma Kant Shukla and his Swedish colleague Prof. Bengt Eliasson report on their findings in Physical Review Letters.

Pioneers of the giant freak wave

Shukla and Eliasson already managed to simulate how the giant freak wave occurs on the computer four years ago. If two or more waves meet at a certain relatively small angle, they can progressively “amplify” each other. Two non-linear interacting waves therefore act very differently to a single wave which shows normal instabilities and breaks up into several small waves, which then run diagonally to each other. Two non-linear waves, however, cause the water to behave in a new way, for example, the emergence of downright “wave packets” with amplitudes three times higher than that of a single wave. Buoyed by strong currents and powerful – opposing – winds, the giant wave can continuously build up from there.

Bundled energy

With their new statistical model, the scientists have now succeeded in taking another crucial step towards explaining this freak wave: it results from combined non-linear effects in the wave-to-wave interaction and the dispersion of the “wave packets” in a certain direction. This causes the energy of the water to be concentrated “in a narrow band across a confined wavelength spectrum”, and with sudden, large amplitude. The actual instability of individual waves is “saturated” through the broadening of the wave spectrum, thus the water-wave system temporarily stabilises itself. This behaviour is typical for the localised giant wave, the researchers explain. Their calculations tally with observations from experiments in large water tanks. “These show that long-crested water waves, i.e. groups of waves propagating in approximately the same direction, have an increased tendency to evoke extreme events,” said Shukla and Eliasson.

A step towards prediction

The fact that the giant wave is no “sailor’s yarn” has been known at least since the cruise liner Queen Elizabeth 2 encountered such a freak wave in 1995. The damage to passenger and cargo ships, but also for example to oil platforms at sea can be considerable. Shukla and Eliasson’s statistical model is a contribution to being able to predict freak waves in certain regions - for example in the North Atlantic or the Mediterranean - and providing early warning in future. The deeper physical understanding of the giant wave and statistical calculation would have to be combined with new, improved methods of observation, the researchers say.

Bibliographic record

Bengt Eliasson and P. K. Shukla: Instability and Nonlinear Evolution of Narrow-Band Directional Ocean Waves. Physical Review Letters 104, DOI: 101103

Further information

Prof. Dr. Dr. h.c. mult. Padma Kant Shukla, Institute for Theoretical Physics, Ruhr-Universität Bochum, Tel. 0234/32-23759, e-mail: ps@tp4.rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>