Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

12.07.2018

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar structures can be observed in magnetic materials. Magnetic whirls are formed when the magnetic moments are aligned in a circular fashion. These so-called skyrmions are not just interesting for basic research -- because of their stability and their tiny dimensions they could prove crucial for the development of future magnetic storage.


A "skyrmion lattice": a lattice of magnetic vortices - so-called skyrmions --exists also at low temperatures in the chiral magnet The arrows represent the direction of the local magnetization.

Markus Garst / TU Dresden


The new magnetic phase was discovered and studied at the instrument SANS-1 of the research neutron source Heinz Maier-Leibnitz (FRM II). Alfonso Chacon and Dr. Mühlbauer adjust the detector.

Wenzel Schürmann / TUM

For these reasons they are currently at the center of a large body of research. One of the key questions is about when and how they occur. A team of researchers from Technical University of Munich (TUM), Technical University of Dresden and the University of Cologne has shown for the first time, that magnetic skyrmions can form due to different mechanisms in separate phases in the same material. Their discovery in the chiral magnet Cu2OSeO3 near absolute zero temperature (-273.15 °C) is published in the scientific journal Nature Physics.

Tiny magnetic structures for compact magnetic storage?

"Skyrmions usually exist in a single thermodynamic parameter range, that is, a certain range of temperature and magnetic or electric field strength. Indeed, this is the case for all the materials in which skyrmions have been found so far," explains physicist Christian Pfleiderer of TUM, who led this research study.

"This imposes a constraint for the creation and technical use of skyrmions, since they are only stable as long as one finds and abides to the exact physical parameters required. Now, in a single material we have found two different skyrmion phases, with two different sets of parameters. Previously it was thought that the new mechanism is very weak. But now it turns out, that there are many more possibilities to create and control skyrmions than we have thought."

Second skyrmion phase at very low temperatures

Alfonso Chacon discovered the new phase, when he studied the metastable properties of an already known skyrmion phase at the research neutron source of TUM. He explains: "These metastable properties interests us, because this way we can learn about the related energies and the stability of skyrmions. This helps us to understand the mechanism of their formation and how they are destroyed. While we performed these measurements I discovered that something very unexpected and odd was going on."

"At low temperatures quantum effects play an increasingly larger role", explains Dr. Markus Garst from the Institute of Theoretical Physics at the Technical University of Dresden. "These influence also the physical properties of the magnetic skyrmions. The new findings allow to study quantum skyrmions in magnets in detail."

"We have been working on skyrmions for more than a decade and for one and a half years at the current project and have a very successful collaboration among the groups," says Markus Garst. "The colleagues from Munich made their observations with neutron scattering experiments, that allow to visualize magnetic structures. In collaboration with Lukas Heinen and Achim Rosch from Cologne we were able to explain the experimental results." This scientific discovery was only possible, because of the close collaboration between both experimental and theoretical physicists.

The discovery and study of this magnetic phase took place at the small angle neutron scattering experiment SANS-1 at the Maier Leibnitz Zentrum at the Research Neutron Source Heinz Maier-Leibnitz (FRM II) of TUM.
The research was funded by the German Research Foundation (DFG) in the frame of the Collaborative Research Centres SFB 1143 "Correlated Magnetism: From Frustration To Topology" and SFB 1238 "Control and Dynamics of Quantum Materials" as well as the TRR80 "From Electronic Correlations to Functionality". The European Union supported the project with the ERC-Grant TOPFIT and the TUM Graduate School supported some of the authors.

Media inquiries:
PD Dr. Markus Garst
Institute of Theoretical Physics
Technische Universität Dresden
Tel.: +49 (0) 351 463 32847
E-Mail: markus.garst@tu-dresden.de

Prof. Dr. Christian Pfleiderer
Chair for Topology of Correlated Systems
Physik-Department
Technische Universität München
Tel.: +49 (0) 89 289-14720
E-Mail: christian.pfleiderer@tum.de

Originalpublikation:

Observation of two independent skyrmion phases in a chiral magnetic material
A. Chacon, L. Heinen, M. Halder, A. Bauer, W. Simeth, S. Mühlbauer, H. Berger, M. Garst, A. Rosch and C. Pfleiderer
Nature Physics (2018)
DOI: 10.1038/s41567-018-0184-y

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-dresden.de

More articles from Physics and Astronomy:

nachricht Simple experiment explains magnetic resonance
09.12.2019 | University of California - Riverside

nachricht Electronic map reveals 'rules of the road' in superconductor
09.12.2019 | Rice University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>