Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields slow down stars

12.06.2012
Scientists have proved the existence of a magnetic effect that could explain why solar-like stars spin very slowly at the end of their lifetime.

Researchers from the Leibniz-Institut für Astrophysik Potsdam (AIP) made simulations of the magnetic fields of stars and compared the results with measurements from a laboratory experiment done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).


Numerical Simulations show a strong disturbation of the magnetic fields inside a star for higher than critical magnetic field values. Credits: AIP

The aim and result of this experiment was to detect, for the first time, a magnetic instability that had been theoretically predicted but never directly observed in a star. This magnetic effect would enhance the viscosity of hot plasma inside a star, leading to a strong deceleration of its core.

“We have known for years that the Tayler instability is an effective mechanism to explain the deceleration of stars, but until now there was no proof of its existence,“ says Günther Rüdiger, the principal investigator at AIP. “This experiment confirms our numerical predictions very well!“ adds Marcus Gellert, who conducted computer simulations to prepare the experiment.

In order to correlate with the low rotation rates observed in white dwarfs, or neutron stars, which are stars at the end of their life cycle, the core rotation rate of a solar-like star would have to drop by ninety percent. A permanently active magnetic instability could decelerate the core of a star very effectively and would explain observations in a simple and elegant way.
The extent to which these laboratory results can be transferred to a real star has to be shown via new simulations and comparisons with observations in the near future. The confirmation of the Tayler instability underlines the importance of magnetic fields in stars and could be an important step towards creating more consistent models of stellar evolution.

The GATE experiment is a successor to the award-winning “PROMISE“ experiment which, in 2010, proved the existence of so-called magnetorotational instability (MRI), demonstrating a second successful partnership between astronomers from AIP and scientists at HZDR in shedding more light on stars in the lab.

The key topics of the Leibniz Institute for Astrophysics are cosmic magnetic fields and extragalactic astrophysics. A considerable part of the institute's efforts aim at the development of research technology in the fields of spectroscopy, robotic telescopes, and e-science. The AIP is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory of Potsdam founded in 1874.
The latter was the world's first observatory to emphasize explicitly the research area of astrophysics. The AIP is a foundation according to civil law and is a member of the Leibniz Association. The Leibniz Association is a network of 86 independent research institutes and scientific service facilities, which strive for scientific solutions for major social challenges.

Science contact: Prof. Dr. G. Rüdiger, gruediger@aip.de; Dr. M. Gellert, mgellert@aip.de, Tel.: +49 331 7499 530
Press contact:
Dr. Gabriele Schönherr / Kerstin Mork, presse@aip.de Tel.: +49 331 7499 469
Weitere Informationen:

http://arxiv.org/abs/1201.2318
Rüdiger G., Gellert M., Schultz M., Strassmeier K.G., Stefani F., Gundrum Th., Seilmayer M., Gerbeth G.: Critical fields and growth rates of the Tayler instability as probed by a columnar gallium experiment

http://prl.aps.org/abstract/PRL/v108/i24/e244501
Martin Seilmayer, Frank Stefani u.a.: Evidence for transient Tayler instability in a liquid metal experiment, in: Physical Review Letter

Kerstin Mork | Leibniz-Institut für Astrophysik
Further information:
http://www.aip.de

More articles from Physics and Astronomy:

nachricht ALMA discovers aluminum around young star
17.05.2019 | National Institutes of Natural Sciences

nachricht JQI researchers shed new light on atomic 'wave function'
17.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>