Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields in distant galaxy are new piece of cosmic puzzle

31.08.2017

Astronomers have measured magnetic fields in a galaxy 4.6 billion light-years away -- a big clue to understanding how magnetic fields formed and evolved over cosmic time.

In an article published Aug. 28 in Nature Astronomy, a collaboration led by Sui Ann Mao, the Minerva Research Group leader at the Max Planck Institute for Radio Astronomy and a former postdoctoral Jansky Fellow at the University of Wisconsin-Madison, reports the discovery of large, well-ordered magnetic fields in a galaxy far, far away.


Light from the distant quasar 7.9 billion light-years away is bent and magnified in this schematic view by the foreground galaxy's mass 4.6 billion light-years away in a phenomenon called 'gravitational lensing.' Sight lines toward images A and B probe different magnetic fields and gas conditions through different parts of the lensing galaxy.

Courtesy of Sui Ann Mao

Because of the time it takes light to travel such immense distances, astrophysicists observe cosmologically distant magnetic fields as they were 4.6 billion years ago. The new observations provide hints at how magnetic fields have grown into galactic-sized structures since the beginning of the universe.

Like the humble refrigerator magnet, astronomical objects such as galaxies, stars, and even our own Earth have magnetic fields that attract and repel other magnets and electrically charged matter. Understanding magnetic fields is essential to understanding fundamental questions about the universe. Among other things, magnetic fields play a crucial role in the processes that form stars out of interstellar gas, determine how stars affect their surroundings, and indicate whether planets may or may not be habitable.

In the Big Bang theory for the origin of the universe, there were no magnetic fields in the cosmos. So when and how did magnetic fields arise? Scientists, including Mao's team, aim to answer the question by observing the strength and organization of magnetic fields in galaxies as far away -- and therefore as far back in time -- as possible, when the universe was much younger.

"By catching magnetic fields when they're so young, we can rule out some of the theories of where they come from," explains Ellen Zweibel, a professor of astronomy and physics at UW-Madison and a co-author of the new study.

Astronomers had measured large, well-ordered magnetic fields in our own Milky Way and in galaxies in our cosmic neighborhood before. But Mao's team is the first to successfully measure the magnetic field structure of a galaxy so distant in both space and time, pushing the boundaries of what's capable with current radio telescope technology and analysis techniques.

With the National Radio Astronomy Obesrvatory's Very Large Array, a collection of 27 radio telescopes in New Mexico arranged to function together as a single enormous telescope, Mao observed a distant galaxy with a specific configuration optimal for measuring the galaxy's magnetic fields.

The galaxy lies in front of a quasar, one of the brightest objects in the sky. The light from the quasar appears as two distinct images around the foreground galaxy, bent and magnified by the galaxy's mass in a phenomenon called gravitational lensing. Mao and her team measured how properties of the two images of the quasar differed, affected by the magnetic fields of the galaxy, to determine the strength and organization of those magnetic fields.

"It's a beautiful experiment," Zweibel says of Mao's experimental design. Zweibel explains that the setup eliminates the need to account for how looking through different parts of the Milky Way would affect the observations. Since the two views of the quasar are observed along two very close lines of sight through the Milky Way, they are affected in the same way and can be compared.

Mao first proposed this experiment to Zweibel when she was a postdoctoral scientist at UW-Madison. She says Madison is a stimulating environment for studying and discussing magnetic fields in the universe because of a critical mass of scientists researching the phenomenon and the annual Midwest Magnetic Fields Workshop that takes place in Madison.

"Madison is the magnetic fields capital of the USA -- it's the place to go if you want to study magnetism," says Mao.

###

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Erika K. Carlson, 925-321-6440, ecarlson@astro.wisc.edu

Media Contact

Sui Ann Mao
mao@mpifr-bonn.mpg.de
49-228-525-246

 @UWMadScience

http://www.wisc.edu 

Sui Ann Mao | EurekAlert!

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>