Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-distance transport of green power: First successful testing of a 20 kA superconducting cable

11.03.2014

The growing deployment of renewable energy sources (RES) will have to be accompanied by a significant expansion of the electricity grids.

The places where the generation of energy from wind, solar or hydro would be most economically competitive are often located in remote areas (offshore wind for example), distant from the densely populated zones where the energy is needed.


The test station at CERN

In this perspective, the Institute for Advanced Sustainability Studies (IASS) together with CERN (European European Organization for Nuclear Research) reached an important milestone on February 20th with the successful testing of a prototype superconducting cable able to carry 20 kA of current.

Nobel Laureate and IASS Scientific Director Carlo Rubbia commented on this result: “This is really a breakthrough. For the first time, we have a real cable which offers a practical way of transporting large amounts electricity over long distances, using a simple configuration and cheap, widely available materials”.

The experiment, which was the first of its kind, took place in the laboratories of CERN in the framework of an IASS-CERN collaboration aimed at assessing the potential of electric power cables based on the superconducting material magnesium diboride (MgB2). The tested configuration consists of two very thin, 20 m-long MgB2 cables combined in series for direct current (DC) transmission, and placed inside a semi-flexible cryostat that uses helium gas to maintain the very low temperatures required to enable superconductivity.

During this latest test, the cable setup, which has a total diameter of only 16 cm, housed two MgB2 cables able to transfer a current of 20 kA at low temperatures of about 24 K, and showed very good and homogeneous superconducting properties.

In the future, this type of superconducting cable could be installed underground, with periodically spaced cryogenic stations; a technology that is similar to the widespread natural gas distribution grid. It would achieve capacities of 2 to 10 GW, or even higher, with operating voltages that can be tailored for optimised performance. To give an example, the planned German Suedlink transmission line, meant to connect the North Sea to Lower Fraconia, would have a capacity of 4 GW with a subsequent uprating to 12 GW by 2032 (Netzentwicklungsplan).

In comparison to the alternatives, these superconducting underground cables would provide several significant advantages ranging from efficiency, cost, ease of implementation and environmental impact. First of all, superconducting materials like MgB2 are able to transmit electrical power without incurring resistive losses, which on the contrary affect conventional HVDC (and AC) lines and increase with the length of the line. Fewer losses translate into increased economic profitability and better resource management, as less energy is wasted.

Another distinctive feature of MgB2 SC cables is their small size: the whole installation for a 4 GW 800 km-long bi-polar cable, including the cryogenic envelope, is expected to have a total diameter of about 30 cm, which is less than most existing natural gas pipelines and much smaller than the corridor width needed for standard HVDC underground cables (about 20 m for 10 GW in central Europe). These latter also suffer from heat dispersion issues that severely limit the maximum capacity and have negative consequences for soils; in the case of SC cables, this drawback is entirely eliminated.

Finally, the choice of underground cables instead of overhead lines carries the usual benefits: it enables underwater crossings and transmission within densely populated areas and avoids the need to build massive transmission towers. Public opposition to invasive and environmentally harmful overhead lines has become an important factor in the decision-making process regarding grid expansion projects. Therefore, the search for technological alternatives is paramount. Additionally, existing rights-of-way could be used to install SC cables.

The first cost estimates show that the investment costs for the construction of a 4 GW MgB2 transmission line would be up to several times lower than for a standard ±320 kV HVDC underground cable, and competitive with HVDC overhead lines. The relatively low cost of MgB2 SC cables stems from their low cost per kA and meter (due to inexpensive materials) and simple manufacturing process.

Presently, IASS and CERN are pioneering the development of MgB2 cables. The results of the recent test have confirmed the promising nature of magnesium diboride, especially with respect to alternative materials like the expensive high-temperature superconductors (HTS). Additional tests of the prototype cable are planned in the coming weeks with the purpose of conducting further measurements and experimenting under various conditions. In parallel to these experimental activities, IASS has established contacts with partners from European industries and transmission operators in order to undertake the next steps in the R&D process and move towards industrial application.

Weitere Informationen:

http://www.iass-potsdam.de
http://www.iass-potsdam.de/research-clusters/earth-energy-and-environment-e3/sci...

Corina Weber | idw - Informationsdienst Wissenschaft

Further reports about: CERN HVDC IASS Sustainability capacity construction diameter materials temperatures underground

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>