Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Little star sheds light on young planets

04.09.2018

Astronomers discover new stage in evolution of young solar systems

Early in 2017, Assistant Professor Yoko Oya gave graduate student Yuki Okoda some recent complex data on a nearby star with which she could begin her Ph.D. Little did she realize that what she would find could unlock not only the secrets of how planets form but possibly her career as a professional astronomer.


This is a false-color submillimeter-wavelength image of the IRAS 15398-3359 system 47 light years from Earth.

Credit: ©2018 Yuki Okoda, Graduate School of Science, The University of Tokyo


IRAS 15398-3359 is a Class 0 protostar, invisible to human eyes, it must be viewed in longer wavelengths.

Credit: ©2018 Yuki Okoda, Graduate School of Science, The University of Tokyo

The star in question (only known by its catalog number IRAS 15398-3359) is small, young and relatively cool for a star. It's diminutive stature means the weak light it shines can't even reach us through a cloud of gas and dust that surrounds it. But this doesn't stop inquisitive minds from exploring the unknown.

In 2013, Oya and her collaborators used the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to observe the star in submillimeter wavelengths, as that kind of light can penetrate the dust cloud - for reference, red light is around 700 nanometers. A painstaking analysis revealed some interesting nebulous structures, despite the images they worked from being difficult to comprehend.

"The greatest academic challenge I've faced was trying to make sense of grainy images. It's extremely difficult to know exactly what you're really looking at." says Okoda. "But I felt compelled to explore the nature of the structures Dr. Oya had seen with ALMA, so I came up with a model to explain them." The model she produced came as a surprise to Okoda and her colleagues, but it fit the data perfectly. It describes a dense disk of material that consists of gas and dust from the cloud that surrounds the star. This has never before been seen around such a young star.

The disk is a precursor to a protoplanetary disk, which is far denser still and eventually becomes a planetary system in orbit around a star.

"We can't say for sure this particular disk will coalesce into a new planetary system," explains Oya. "The dust cloud may be pushed away by stellar winds or it might all fall into the star itself, feeding it in the process. What's exciting is how quickly this might happen."

The star is small at around 0.7 percent the mass of our sun, based on observations of the mass of the surrounding cloud. It could grow to as large as 20 percent in just a few tens of thousands of years, a blink of the eye on the cosmic scale.

"I hope our observations and models will enhance knowledge of how solar systems form," says Okoda. "My research interests involve young protostellar objects, and the implication that protoplanetary disks could form earlier than expected really excites me."

Okoda began this project a year-and-a-half ago to hone her skills as an astronomer, but mirroring the young star she observed, the practice evolved quickly and became a full research project, which will hopefully earn her a Ph.D. from the University of Tokyo.

The observations and resultant model were only possible thanks to advancements in radio astronomy with observatories such as ALMA. The team was lucky that the plane of the disk is level with our own solar system as this means the starlight ALMA sees passes through enough of the gas and dust to divulge important characteristics of it.

"We were also lucky to be given time with ALMA to carry out our observations. Only about 20 percent of applications actually go ahead," explains Oya. "With highly specialized astronomical instruments, there is much competition for time. My hope is our success will inspire a new generation of astronomers in Japan to reach for the stars."

###

Journal article

Yuki Okoda, Yoko Oya, Nami Sakai, Yoshimasa Watanabe, Jes K. Jørgensen, Ewine F. Van Dishoeck, and Satoshi Yamamoto

"The Co-evolution of Disks and Stars in Embedded Stages: The Case of the Very-low-mass Protostar IRAS 15398-3359" - Astrophysical Journal Letters

http://iopscience.iop.org/article/10.3847/2041-8213/aad8ba

DOI 10.3847/2041-8213/aad8ba

Research contact

Yuki Okoda - okoda@taurus.phys.s.u-tokyo.ac.jp
Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, JAPAN

Public relations contacts

Rohan Mehra - press-releases.adm@mail.u-tokyo.ac.jp
Division for Strategic Public Relations, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, JAPAN

Kristina Awatsu - kouhou.s@gs.mail.u-tokyo.ac.jp
Office of Communication, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, JAPAN

Related links

Department of Physics, Graduate School of Science, The University of Tokyo http://www.phys.s.u-tokyo.ac.jp/en/

Graduate School of Science, The University of Tokyo
https://www.s.u-tokyo.ac.jp/en/

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en

Yuki Okoda | EurekAlert!
Further information:
http://iopscience.iop.org/article/10.3847/2041-8213/aad8ba
http://dx.doi.org/10.3847/2041-8213/aad8ba

Further reports about: IRAS planetary system protoplanetary disk solar system young star

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>