Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening to the Big Bang – in High Fidelity

08.04.2013
A decade ago, spurred by a question for a fifth-grade science project, University of Washington physicist John Cramer devised an audio recreation of the Big Bang that started our universe nearly 14 billion years ago.

Now, armed with more sophisticated data from a satellite mission observing the cosmic microwave background – a faint glow in the universe that acts as sort of a fossilized fingerprint of the Big Bang – Cramer has produced new recordings that fill in higher frequencies to create a fuller and richer sound.

A 100-second clip is at https://soundcloud.com/uw-today/bigbangsound100. All of the sound files, which range from 20 seconds to a little longer than 8 minutes, are at http://faculty.washington.edu/jcramer/BBSound_2013.html.)

The effect is similar to what seismologists describe as a magnitude 9 earthquake causing the entire planet to actually ring. In this case, however, the ringing covered the entire universe – before it grew to such gargantuan proportions.

"Space-time itself is ringing when the universe is sufficiently small," Cramer said.

In 2001, Cramer wrote a science-based column for Analog Science Fiction & Fact magazine describing the likely sound of the Big Bang based on cosmic microwave background radiation observations taken from balloon experiments and satellites.

A couple of years later that article prompted a question from a mother in Pennsylvania whose 11-year-old son was working on a project about the Big Bang: Is the sound of the Big Bang actually recorded anywhere?

Cramer answered that it wasn't – but then began thinking that it could be. He used data from the cosmic microwave background on temperature fluctuations in the very early universe. The data on those wavelength changes were fed into a computer program called Mathematica, which converted them to sound. A 100-second recording represents the sound from about 380,000 years after the Big Bang until until about 760,000 years after the Big Bang (that recording and others are at http://faculty.washington.edu/jcramer/BBSound_2003.html.

"The original sound waves were not temperature variations, though, but were real sound waves propagating around the universe," he said.

Cramer noted, however, that the 2003 data lacked high-frequency structure. More complete data were recently gathered by an international collaboration using the European Space Agency's Planck satellite mission, which has detectors so sensitive that they can distinguish temperature variations of a few millionths of a degree in the cosmic microwave background. That data were released in late March and led to the new recordings.

As the universe cooled and expanded, it stretched the wavelengths to create "more of a bass instrument," Cramer said. The sound gets lower as the wavelengths are stretched farther, and at first it gets louder but then gradually fades. The sound was, in fact, so "bass" that he had to boost the frequency 100 septillion times (that's a 100 followed by 24 more zeroes) just to get the recordings into a range where they can be heard by humans.

Cramer is a UW physics professor who has been part of a large collaboration studying what the universe might have been like moments after the Big Bang by causing collisions between heavy ions such as gold in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory in New York.

Creating a sound profile for the Big Bang was something to do on the side, Cramer said.

"It was an interesting thing to do that I wanted to share. It's another way to look at the work these people are doing," he said.

For more information, contact Cramer at jcramer@uw.edu.

http://www.washington.edu/news/2013/04/04/listening-to-the-big-bang-in-high-fidelity-audio/

Vince Stricherz | Newswise
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>