Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LISA Pathfinder mission paves way for space-based detection of gravitational waves

08.06.2016

LISA Pathfinder, a mission led by the European Space Agency (ESA) with contributions from NASA, has successfully tested a key technology needed to build a space-based observatory for detecting gravitational waves. These tiny ripples in the fabric of space, predicted by Albert Einstein a century ago, were first seen last year by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO).

Seismic, thermal, and other noise sources limit LIGO to higher-frequency gravitational waves around 100 cycles per second (hertz). But finding signals from more exotic events, such as mergers of supermassive black holes in colliding galaxies, requires the ability to see frequencies at 1 hertz or less, a sensitivity level only possible from space.


An artist's rendering of LISA Pathfinder on its way to Earth-sun L1.

Credit: ESA/C. Carreau

A space-based observatory would work by tracking test masses that move only under the influence of gravity. Each spacecraft would gently fly around its test masses without disturbing them, a process called drag-free flight. The primary goal of ESA's LISA Pathfinder mission is to test current technology by flying around an identical pair of 1.8-inch (46 millimeter) cubes made of a gold-platinum alloy, a material chosen for its high density and insensitivity to magnetic fields.

Scientists say the results are nothing short of astonishing. Non-gravitational forces on the cubes were reduced to levels far below the project's original requirements and approach the level of control needed for a full-scale observatory.

"The measurements have exceeded our most optimistic expectations," said Paul McNamara, the LISA Pathfinder project scientist at ESA's Directorate of Science, Noordwijk, the Netherlands. "We reached the level of precision originally required for LISA Pathfinder within the first day, and so we spent the following weeks improving the results a factor of five better."

The findings were published Tuesday, June 7, 2016 in the journal Physical Review Letters.

"LISA Pathfinder was always intended as a stepping stone to the level of performance needed for a full-scale gravitational wave observatory, but these results tell us we've nearly made the full jump. A full-scale observatory with LISA Pathfinder's performance would achieve essentially all of the ultimate science goals," said Ira Thorpe, a team member at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "That's amazing in itself, and data from this mission will help us build on an already impressive foundation."

The test masses are housed in an experiment called the LISA Technology Package (LTP), which was built by a consortium of European national space agencies and ESA. The LTP uses a high-resolution laser interferometer to determine the positions of the test masses and relays the information to the spacecraft's Drag-Free and Attitude Control System, which then applies minute bursts from microthrusters. In this way, the spacecraft flies in formation with the cubes and isolates them from external forces. The results show that LISA Pathfinder reduced non-gravitational forces on the test masses to a level about 10,000 times smaller than drag-free control technologies used on previous science missions.

At frequencies between 1 and 60 millihertz, control over the test masses is affected by a small number of gas molecules bouncing off the cubes. The effect became less prominent over time as molecules escaped into space, and it is expected to improve further in the following months.

Below 1 millihertz, researchers measured a small centrifugal force acting on the test masses. This arose from a combination of the shape of the spacecraft's orbit and noise from star trackers used to maintain LISA Pathfinder's orientation. This component would be reduced in a multi-spacecraft observatory, where each spacecraft would have its own test mass and be laser-linked to others millions of miles away.

Even cosmic rays penetrating the spacecraft can affect the results by transferring electrical charge to the test masses. Left unchecked, the accumulating charge would produce enough force on the cubes to disturb measurements. LISA Pathfinder is testing a system never before used in space that shines ultraviolet light on the cubes to remove charge without contacting them.

The team can even see the gravitational effect on the cubes caused by the reduced mass of thruster fuel as it is consumed by spacecraft maneuvers.

"These impressive results show that LISA Pathfinder has successfully demonstrated some of the advanced technologies needed for a future space-based gravitational wave observatory," said Paul Hertz, director of NASA's Astrophysics Division in Washington. "ESA is currently planning such a mission for the 2030s, and NASA is working closely with ESA in exploring how we might continue the successful LISA Pathfinder partnership in that mission."

LISA Pathfinder also carries a NASA experiment called the ST-7 Disturbance Reduction System. Managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, the experiment combines novel "electrospray" thrusters with drag-free control software provided by Goddard on a dedicated computer. Developed by Busek Co. Inc. in Natick, Massachusetts, with technical support from JPL, the thrusters generate force by electrically charging small liquid droplets and accelerating them through an electric field in much the same way as an ink jet printer propels ink droplets onto paper. The experiment, which will use information on the position of the test masses provided by the LTP to determine how to move the spacecraft, is expected to begin science operations in early July.

LISA Pathfinder was launched on Dec. 3, 2015, and began orbiting a point called Earth-sun L1, roughly 930,000 miles (1.5 million kilometers) from Earth in the sun's direction, in late January 2016. LISA stands for Laser Interferometer Space Antenna, a space-based gravitational wave observatory concept that has been studied in great detail by both NASA and ESA.

###

To read the study, please visit:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.231101

For high-resolution images and video, please visit:

https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=12264

To learn more about LISA Pathfinder, please visit:

http://sci.esa.int/lisa-pathfinder/

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>