Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life on Mars? The Laser Zentrum Hannover is Searching

28.09.2010
Scientists of the Laser Zentrum Hannover e.V. (LZH) are currently developing a laser suitable for use in outer space for the so-called EXOMARS-MISSION. With the help of this laser, hopes are high that any form of life on the red planet can be found.

Europe is getting ready for its first unmanned visit to the surface of Mars. "On board" are the scientists of the Laser Zentrum Hannover e.V. (LZH). The group Space Technologies are currently developing a laser suitable for use in outer space for the so-called EXOMARS-MISSION. With the help of this laser, hopes are high that any form of life on the red planet can be found.

The first European Mars Rover on a joint mission of the American and European space agencies NASA and ESA will take off in 2018. The 250 kg Rover will roll over the surface of Mars at a speed of 100 m per hour. While doing so, it will inspect the surface and gather up ground and rock samples, some of them up to 2 m deep. The main goals of the so-called EXOMARS mission are to search for traces of former or present life on the earthlike planet, and to prepare for the arrival of a manned Mars landing.

One of the central analytical instruments on the EXOMARS Rover is MOMA. MOMA stands for "Mars Organic Molecule Analyser" and will help with the complicated search for traces of life, by identifying organic materials and analysing it. If organic molecules like hydrocarbons are found, this might mean they might point to possible forms of life on Mars.

One of the core components in the MOMA is a laser desorption mass spectrometer (LD-MS) suited to travel in space, which includes a diode-pumped, solid-state laser in the UV spectrum. Using laser desorption, it is possible to bring non-vaporizable molecules in a gas phase, and make them slightly ionized, so they can be detected in a mass spectrometer. To achieve this, a compact, pulsed laser with a radiation wavelength of 266 nm is needed, with a laser pulse energy of more than 250 µJ. Such a laser system, which is also suitable for travel in space, is currently not available.

In order to use this decisive technology, the Space Technologies Group in the Laser Development Department of the LZH has received funding from the national program "exploration of outer space". The current project aims at optimizing an existing laser system prototype, making it ready for the mission by 2014.

Around 3 million Euros will be going to the LZH for further development and qualification of the so-called Laser Desorption Mass Spectrometer (LD-MS), which is being constructed under the leadership of the Max Planck Institute for Solar System Research (MPS).

The core job of the LZH is to develop and construct the actual solid-state laser head. The technical requirements for use in outer space are very high. Dr. Jörg Neumann, project leader at the LZH explains, "The high temperature changes between night and day on Mars are a real problem. On top of that come the mechanical vibrations on the way to Mars and cosmic, ionising radiation. The real challenge is, that the laser must be rugged enough to withstand these elements, but at the same time light, small and compact."

Scientists in the Laser Development Department are working on a passively Q-switched Nd:YAG oscillator, which is pumped longitudinally using optical fibers. With the help of non-linear crystals, the infrared light of the oscillator is transformed into ultraviolet light. Thermal controls guarantee that this system functions despite changing surrounding temperatures.

Dr. O. Roders is the project leader for the MOMA instrument at MPS in Katlenburg-Lindau in Lower Saxony, the partner working together with the LZH. He sees the cooperation with the Laser Zentrum as an excellent combination of know-how. "The absolute specialists for the necessary UV laser technology are working in Hannover," he says. "Our experience is necessary for the suitable laser electronical parts that have to withstand the most harsh conditions in space."

Several years of intensive development are still necessary before the group has completed a model suitable for use in space, but first investigation with a prototype are very promising: the laser head has already successfully withstood ionising radiation, vibrations and a thermal-vacuum test.

This project is subsidized by the German Aerospace Center (DLR) with funding from the Federal Ministry of Economics and Technology (BMWi), based on a resolution passed by the German Parliament under project number 50 QX 1002.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with a WORD-download and when possible illustrations at www.lzh.de under "publications/press releases"

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>