Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser pulses help scientists tease apart complex electron interactions

20.12.2016

Time-resolved “stop-action” measurements and advanced theoretical simulations identify an unusual form of energy loss

Understanding the properties of complex quantum materials is a major goal of condensed matter physics and materials science, since effects like high-temperature superconductivity might lead to a broad range of applications.


A first laser pulse excites a solid; a second pulse knocks out electrons that travel to a detector. The resulting pictures allow scientists to learn about fundamental interactions inside the solid.

© Brian Moritz / SLAC

Now an international team of scientists including Emmy Noether group leader Michael Sentef from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg has demonstrated a new laser-driven “stop-action” technique for studying complex electron interactions under dynamic conditions. The findings, published in the journal Nature Communications today, are expected to improve the understanding of the physical processes leading to emergent phenomena in strongly correlated materials.

Scientists studying high temperature superconductors—materials that carry electric current with no energy loss when cooled below a certain temperature—have been searching for ways to study in detail the electron interactions thought to drive this promising property. One big challenge is disentangling the many different types of interactions—for example, separating the effects of electrons interacting with one another from those caused by their interactions with the atoms of the material.

In the present study, the researchers used one very fast, intense “pump” laser to give electrons a blast of energy, and a second “probe” laser to measure the electrons’ energy level and direction of movement as they relax back to their normal state.

“By varying the time between the ‘pump’ and the ‘probe’ laser pulses we can build up a stroboscopic record of what happens—a movie of what this material looks like from rest through the violent interaction to how it settles back down,” said Jonathan Rameau, physicist at the Brookhaven National Laboratory and one of the lead authors on the paper. “It’s like dropping a bowling ball in a bucket of water to cause a big disruption, and then taking pictures at various times afterward,” he explained.

The technique, known as time-resolved, angle-resolved photoelectron spectroscopy (tr-ARPES), combined with complex theoretical simulations and analysis, allowed the team to tease out the sequence and energy “signatures” of different types of electron interactions. They were able to pick out distinct signals of interactions among excited electrons (which happen quickly, but don’t dissipate much energy), as well as later-stage random interactions between electrons and the atoms that make up the crystal lattice (which generate friction and lead to gradual energy loss in the form of heat).

But they also discovered another, unexpected signal—which they say represents a distinct form of extremely efficient energy loss—at a particular energy level and timescale between the other two.

“We see a very strong and peculiar interaction between the excited electrons and the lattice, where the electrons are losing most of their energy very rapidly in a coherent, non-random way,” Rameau said. At this special energy level, he explained, the electrons appear to be interacting with lattice atoms all vibrating at a particular frequency—like a tuning fork emitting a single note.

When all of the electrons that have the energy required for this unique interaction have given up most of their energy, they start to cool down more slowly by hitting atoms more randomly without striking the resonant frequency, he said. The resonance frequency of this process is particularly noteworthy, the scientists say, because its energy level corresponds with a “kink” in the energy signature of the same material studied previously in its superconducting state using a static form of ARPES.

At that time, scientists suspected the kink might have something to do with the material’s ability to become a superconductor. They couldn’t detect the same signal above the superconducting temperature. But the new time-resolved experiments, which were done on the material well above its superconducting temperature, were able to tease out the subtle signal. These new findings indicate that this special condition exists even when the material is not a superconductor. “We know now that this interaction doesn’t just switch on when the material becomes a superconductor; it’s actually always there,” Rameau said.

Michael Sentef, who complemented the experimental work with numerical simulations, stressed the impact of this work for the field of pump-probe spectroscopy. “This work highlights the fact that we have advanced our theoretical understanding of systems far from thermal equilibrium to the point where we can make quantitative predictions for experiments,” he said. “This insight is very motivating for future work addressing even more complex situations, in which laser pulses are used to induce high-temperature superconducting-like states,” Sentef added. In a recent work [Mitrano et al., Nature 530, 461–464 (2016)], a team around Andrea Cavalleri from the MPSD at CFEL in Hamburg observed light-induced superconducting-like properties in the material K3C60.

Contact person:

Dr. Michael A. Sentef
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6552
michael.sentef@mpsd.mpg.de

Original publication:

J. D. Rameau, S. Freutel, A. F. Kemper, M. A. Sentef, J. K. Freericks, I. Avigo, M. Ligges, L. Rettig, Y. Yoshida, H. Eisaki, J. Schneeloch, R. D. Zhong, Z. J. Xu, G. D. Gu, P. D. Johnson, and U. Bovensiepen, "Energy Dissipation from a Correlated System Driven Out of Equilibrium," Nature Communications (2016), DOI: 10.1038/ncomms13761

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms13761 Original publication
http://dx.doi.org/10.1038/nature16522 Mitrano et al., Nature 530, 461–464 (2016)
http://www.mpsd.mpg.de/en/research/theo Research group of Prof. Angel Rubio
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Further reports about: Dynamik Electrons Laser Max Planck Institute Max-Planck-Institut laser pulses

More articles from Physics and Astronomy:

nachricht Electrons use the zebra crossing
17.12.2018 | Universität Stuttgart

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>