Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inexpensive plastic used in CDs could improve aircraft, computer electronics

18.05.2009
Physics professor at UH uses Air Force grants to create highly conductive nanocomposites

If one University of Houston professor has his way, the inexpensive plastic now used to manufacture CDs and DVDs will one day soon be put to use in improving the integrity of electronics in aircraft, computers and iPhones.

Thanks to a pair of grants from the U.S. Air Force, Shay Curran, associate professor of physics at UH, and his research team have demonstrated ultra-high electrical conductive properties in plastics, called polycarbonates, by mixing them with just the right amount and type of carbon nanotubes.

The findings are chronicled in a paper titled "Electrical Transport Measurements of Highly Conductive Carbon Nanotube/Poly(bisphenol A carbonate) Composite," appearing in a recent issue of the Journal of Applied Physics, the archival publication of the American Institute of Physics for significant new results in the field.

Curran, who initially began this form of research a decade ago at Trinity College Dublin, started to look at high-conductive plastics in a slightly different manner. Curran's team has come up with a strategy to achieve higher conductivities using carbon nanotubes in plastic hosts than what has been currently achieved. By combining nanotubes with polycarbonates, Curran's group was able to reach a milestone of creating nanocomposites with ultra-high conductive properties.

"While its mechanical and optical properties are very good, polycarbonate is a non-conductive plastic. That means its ability to carry an electrical charge is as good as a tree, which is pretty awful," Curran said. "Imagine that this remarkable plastic can now not only have good optical and mechanical properties, but also good electrical characteristics. By being able to tailor the amount of nanotubes we can add to the composite, we also can change it from the conductivity of silicon to a few orders below that achieved by metals."

Making this very inexpensive plastic highly conductive could benefit electronics in everything from military aircraft to personal computers. Computer failure, for instance, results from the build up of thermal and electrical charges, so developing these polymer nanotube composites into an antistatic coating or to provide a shield against electromagnetic interference would increase the lifespan of computing devices, ranging from PCs to PDAs.

The next step of this research is to develop ink formulations to paint these polycarbonate nanocomposites onto various electrical components. Normally, metal plates are used to dissipate electrical charge, so it's not surprising that the availability of a paintable ink would be particularly appealing to the Air Force for its lightweight properties, resulting in lighter aircraft that guzzle less gas.

Another key component of this latest research is that pristine nanotubes disbursed in this polycarbonate were found to possess an even higher conductivity than acid-treated carbon nanotubes. Traditionally, the tubes are sonicated, or treated with acid, to clean them and remove soot to get a higher conductivity. This, however, damages the tubes and exposes them to defects. Instead, Curran and his group were able to centrifuge, or swirl, them. This takes a little longer, but increases the potential to have higher conductivities. He attributes this to the incredibly clean samples of carbon nanotubes obtained from fellow collaborator David Carroll in the physics department at Wake Forest University.

In addition to Curran and Carroll, the team behind these remarkable findings includes Donald Birx, professor of electrical engineering and vice president for research at UH, two of Curran's former post-doctoral students, Jamal Talla and Donghui Zhang, and a current Curran student, Sampath Dias.

Coincidentally, Curran's former thesis supervisor Werner Blau and his group in the department of physics at Trinity College Dublin have come out with similar findings recently in the journal ACS Nano. Both groups really have been pushing hard in the area of polymer nanotube composites during the course of the last decade. Curran said his group at UH achieved the highest conductivity levels so far, but also is encouraged by Blau's success and said repeating these types of outcomes will open doors for even higher values.

"While these are phenomenal results, finding these unusual highly conductive properties has not even begun to scratch the surface," Curran said. "There is hard science behind it, so developing it further will require significant investment. And we are very thankful to the Air Force for giving us this auspicious start."

About the University of Houston

The University of Houston, Texas' premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 36,000 students.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with nearly 400 faculty members and approximately 4,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, geosciences, mathematics and physics have internationally recognized collaborative research programs in association with UH interdisciplinary research centers, Texas Medical Center institutions and national laboratories.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, visit http://www.uh.edu/news-events/mailing-lists/sciencelistserv.php.

For additional news alerts about UH, follow us on Facebook at http://tinyurl.com/6qw9ht and on Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>