Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hubble sees `Oumuamua getting a boost


New results indicate interstellar nomad is a comet

`Oumuamua, the first interstellar object discovered in the Solar System, is moving away from the Sun faster than expected. This anomalous behaviour was detected using the NASA/ESA Hubble Space Telescope in cooperation with ground-based telescopes. The new results suggest that `Oumuamua is most likely a comet and not an asteroid. The discovery appears in the journal Nature.

This artist's impression shows the first interstellar object discovered in the Solar System, `Oumuamua. Observations made with the NASA/ESA Hubble Space Telescope and others show that the object is moving faster than predicted while leaving the Solar System.

Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

`Oumuamua -- the first interstellar object discovered within our Solar System -- has been the subject of intense scrutiny since its discovery in October 2017 [1]. Now, by combining data from the NASA/ESA Hubble Space Telescope, the Canada-France-Hawaii Telescope , ESO's Very Large Telescope and the Gemini South Telescope, an international team of astronomers has found that the object is moving faster than predicted. The measured gain in speed is tiny and `Oumuamua is still slowing down because of the pull of the Sun -- just not as fast as predicted by celestial mechanics.

The team, led by Marco Micheli (European Space Agency) explored several scenarios to explain the faster-than-predicted speed of this peculiar interstellar visitor. The most likely explanation is that `Oumuamua is venting material from its surface due to solar heating -- a behaviour known as outgassing [2]. The thrust from this ejected material is thought to provide the small but steady push that is sending `Oumuamua hurtling out of the Solar System faster than expected -- as of 1 June, it is travelling with about 114 000 kilometres per hour.

Such outgassing is a typical behaviour for comets and contradicts the previous classification of `Oumuamua as an interstellar asteroid. "We think this is a tiny, weird comet," comments Marco Micheli. "We can see in the data that its boost is getting smaller the farther away it travels from the Sun, which is typical for comets."

Usually, when comets are warmed by the Sun they eject dust and gas, which form a cloud of material -- called a coma -- around them, as well as the characteristic tail . However, the research team could not detect any visual evidence of outgassing.

"We did not see any dust, coma, or tail, which is unusual," explains co-author Karen Meech (University of Hawaii, USA) who led the discovery team's characterisation of `Oumuamua in 2017. "We think that 'Oumuamua may vent unusually large, coarse dust grains."

The team speculated that perhaps the small dust grains adorning the surface of most comets eroded during `Oumuamua's journey through interstellar space, with only larger dust grains remaining. A cloud of these larger particles would not be bright enough to be detected by Hubble.

Not only is `Oumuamua's hypothesised outgassing an unsolved mystery, but also its interstellar origin. The team originally performed the new observations on `Oumuamua to exactly determine its path which would have probably allowed it to trace the object back to its parent star system. The new results means it will be more challenging to obtain this information.

"The true nature of this enigmatic interstellar nomad may remain a mystery," concludes team member Olivier Hainaut (European Southern Observatory, Germany). "`Oumuamua's recently-detected gain in speed makes it more difficult to be able to trace the path it took from its extrasolar home star."



[1]`Oumuamua, pronounced "oh-MOO-ah-MOO-ah", was first discovered using the Pan-STARRS telescope at the Haleakala Observatory, Hawaii. Its name means "a messenger from afar, arriving first" in Hawaiian, and reflects its nature as the first known object of interstellar origin to have entered the Solar System.

[2] The team tested several hypotheses to explain the unexpected change in speed. They analysed whether solar radiation pressure , the Yarkovsky effect, or friction-like effects could explain the observations. It was also checked whether the gain in speed could have been caused by an impulse event (such as a collision), by `Oumuamua being a binary object or by `Oumuamua being a magnetised object. Also, the unlikely theory that `Oumuamua is an interstellar spaceship was rejected: the smooth and continuous change in speed is not typical for thrusters and the object is tumbling on all three axes, speaking against it being an artificial object.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The research team's work is presented in the scientific paper "Non-gravitational acceleration in the trajectory of 1I/2017 U1 (`Oumuamua)", which will be published in the journal Nature on 27 June 2018.

The international team of astronomers in this study consists of Marco Micheli (European Space Agency & INAF, Italy), Davide Farnocchia (NASA Jet Propulsion Laboratory, USA), Karen J. Meech (University of Hawaii Institute for Astronomy, USA), Marc W. Buie (Southwest Research Institute, USA), Olivier R. Hainaut (European Southern Observatory, Germany), Dina Prialnik (Tel Aviv University School of Geosciences, Israel), Harold A. Weaver (Johns Hopkins University Applied Physics Laboratory, USA), Paul W. Chodas (NASA Jet Propulsion Laboratory, USA), Jan T. Kleyna (University of Hawaii Institute for Astronomy, USA), Robert Weryk (University of Hawaii Institute for Astronomy, USA), Richard J. Wainscoat (University of Hawaii Institute for Astronomy, USA), Harald Ebeling (University of Hawaii Institute for Astronomy, USA), Jacqueline V. Keane (University of Hawaii Institute for Astronomy, USA), Kenneth C. Chambers (University of Hawaii Institute for Astronomy, USA), Detlef Koschny (European Space Agency, European Space Research and Technology Centre, & Technical University of Munich, Germany), and Anastassios E. Petropoulos (NASA Jet Propulsion Laboratory, USA).

Image credit: NASA, ESA, M. Kornmesser, L. Calcada



Marco Micheli
Space Situational Awareness Near-Earth Object Coordination Centre
European Space Agency, Frascati, Italy
Tel: +39 06 941 80365

Karen Meech
Institute for Astronomy
University of Hawaii, Honolulu, USA
Tel: +1 720 231 7048
Email: meech@IfA.Hawaii.Edu

Olivier Hainaut
European Southern Observatory
Garching bei München, Germany
Tel: +49 89 3200 6752

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching bei München
Tel: +49 176 62397500

Mathias Jäger, ESA/Hubble, Public Information Officer | EurekAlert!
Further information:

Further reports about: Comets ESA European Southern Observatory Hawaii Hubble NASA Telescope astronomy interstellar

More articles from Physics and Astronomy:

nachricht New method for using spin waves in magnetic materials
22.11.2019 |

nachricht Extremely energetic particles coupled with the violent death of a star for the first time
22.11.2019 | University of Copenhagen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>