Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a tiny Curiosity motor identified a massive Martian dust storm

27.09.2018

There is no shortage of eyeballs, human and robotic, pointed at Mars. Scientists are constantly exploring the Red Planet from telescopes on Earth, plus the six spacecraft circling the planet from its orbit, and two roving its surface. So when dust filled the atmosphere during the recent planet-wide dust storm, observations were plentiful.

NASA's Mars Reconnaissance Orbiter (MRO) provided the earliest insights on May 30 when it observed an accumulation of dust in the atmosphere near Perseverance Valley, where NASA's Opportunity rover is exploring. The increasingly hazy storm, the biggest since 2007, forced Opportunity to shut down science operations by June 8, given that sunlight couldn't penetrate the dust to power the rover's solar panels. Scientists are anxiously waiting for the roving explorer to regain power and phone home.


The chart on the left is showing temperatures for a SAM actuator, starting at Martian sol 2,055, which was May 18 on Earth. The diagonal lines that form a cone starting on sol 2,085 show Benito Prats' predicted actuator temperature range through sol 2,180, or Sept. 23. The vertical blue lines that fill the cone are actual motor temperature readings. The dust storm was classified as global on June 20, or sol 2,088. By that point, the actuator temperature had changed drastically, as is clear in the relatively sudden narrowing of the chart, indicating cooler daytime temperatures and warmer night-time temperatures. The chart on the right is the same, but shows actual temperature readings through sol 2,180, or Sept. 23.

Credit: NASA's Goddard Space Flight Center/Benito Prats/Molly Wasser

Meanwhile, on June 5, evidence quietly materialized on the other side of the globe that the storm was growing and beginning to affect Gale Crater, the research site of NASA's Curiosity rover. (The storm was officially classified as global on June 20.)

It came from an unexpected source: an actuator, or motor, that powers a lid to a funnel that takes in samples of powdered Martian rock dropped in by Curiosity's drill. The samples then undergo chemical analysis by the portable Sample Analysis at Mars (SAM) chemistry lab, designed by scientists at NASA's Goddard Space Flight Center in Greenbelt, Maryland and built into Curiosity's belly.

Benito Prats, a Goddard electromechanical engineer, noticed the dust storm slowly reaching Curiosity through the continuous temperature readings he collected from actuator sensors.

"All my charts showed the dust storm effect on the actuator because it's exposed; it's sitting out there on the rover deck," said Prats. "All of a sudden, I saw the daytime temperature drop really quickly."

Prats observed in the chart above temperature dropping during the day and rising at night above normal levels. This happens during a dust storm because less sun penetrates the dusty atmosphere during the day, cooling the surface of the planet, while at night, the warmer, dusty atmosphere heats the ground.

There are other tools on the rover that track the weather. The Rover Environmental Monitoring Station measures air temperature, atmospheric pressure, and other environmental conditions, which were also beginning to indicate accumulating dust.

Unlike solar-powered Opportunity, Curiosity is powered by a plutonium generator, so its operations were not affected by the dust shade. The temperature changes also didn't affect SAM actuators -- there are two sample funnel, in case one gets clogged -- since they like warmer, less extreme temperatures.

SAM analyzes Martian rocks and soils in search of organic materials. In order for SAM to work properly, its actuators need to be at -40 degrees Celsius (-40 Fahrenheit). This is why Prats keeps a close eye on their temperature. When Martian temperatures in spring dip to -60 degrees Celsius (-76 Fahrenheit) at night, SAM heaters warm up the motors to lift the funnel lid for sample drops.

After Prats discovered the effects of the dust storm in his temperature data, he combined it with historic actuator temperature averages to estimate when the dust storm would abate.

"At sol 2125 (July 28), I noticed a linear trend," he said, "so I said OK, I can predict that sol 2180 (September 23) is going to be when we're going to get out of the dust storm and the temperature will return back to normal, though I later updated that to sol 2175 (September 18)." His prediction was consistent with more formal ones, and matches recent actuator temperature readings, which were back to normal around September 18, indicating that the dust over Gale Crater settled by then. A majority of the dust also has settled at Perseverance Valley.

Data from any source, even the most unexpected, are useful to planetary scientists, given we still don't know why some Martian dust storms last for months and grow massive, while others stay small and last only a week.

Scientists hope to be able to forecast these global events, like they can forecast hurricanes on Earth, in order to better understand the planet's current and past climate and to properly design robotic and human missions to the planet, NASA scientists say.

"There are some things about Mars that make it more predictable and some that make it less so than Earth," said Scott D. Guzewich, a Goddard atmospheric scientist leading Curiosity's dust storm investigation.

"I can estimate, two years in advance, the temperature, air pressure, and whether there's going to be dust or clouds in the air during the non-dusty season anywhere on the planet," he said. "But during the dusty season, in locations that have dust storms, I can't give you any prediction at all that there will be a dust storm on one day and not another."

Lonnie Shekhtman | EurekAlert!
Further information:
https://www.nasa.gov/feature/goddard/2018/how-a-tiny-curiosity-motor-identified-a-massive-martian-dust-storm

Further reports about: Atmosphere Curiosity Goddard Space Flight Center Mars Martian NASA dust storms

More articles from Physics and Astronomy:

nachricht Thin films from Braunschweig on the way to Mercury
19.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>