Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot new material can keep electronics cool

11.05.2010
Few atomic layers of graphene reveal unique thermal properties

Professor Alexander Balandin and a team of UC Riverside researchers, including Chun Ning Lau, an associate professor of physics, have taken another step toward new technology that could keep laptops and other electronic devices from overheating.

Balandin, a professor of electrical engineering in the Bourns College of Engineering, experimentally showed in 2008 that graphene, a recently discovered single-atom-thick carbon crystal, is a strong heat conductor. The problem for practical applications was that it is difficult to produce large, high quality single atomic layers of the material.

Now, in a paper published in Nature Materials, Balandin and co-workers found that multiple layers of graphene, which are easier to make, retain the strong heat conducting properties.

That's also a significant discovery in fundamental physics. Balandin's group, in addition to measurements, explained theoretically how the materials' ability to conduct heat evolves when one goes from conventional three-dimensional bulk materials to two-dimensional atomically-thin films, such as graphene.

The results published in Nature Materials may have important practical applications in removal of dissipated hear from electronic devices.

Heat is an unavoidable by-product when operating electronic devices. Electronic circuits contain many sources of heat, including millions of transistors and interconnecting wiring. In the past, bigger and bigger fans have been used to keep computer chips cool, which improved performance and extended their life span. However, as computers have become faster and gadgets have gotten smaller and more portable the big-fan solution no longer works.

New approaches to managing heat in electronics include incorporating materials with superior thermal properties, such as graphene, into silicon computer chips. In addition, proposed three-dimension electronics, which use vertical integration of computer chips, would depend on heat removal even more, Balandin said.

Silicon, the most common electronic material, has good electronic properties but not so good thermal properties, particularly when structured at the nanometer scale, Balandin said. As Balandin's research shows, graphene has excellent thermal properties in addition to unique electronic characteristics.

"Graphene is one of the hottest materials right now," said Balandin, who is also chair of the Material Sciences and Engineering program. "Everyone is talking about it."

Graphene is not a replacement for silicon, but, instead could be used in conjunction with silicon, Balandin said. At this point, there is no reliable way to synthesize large quantities of graphene. However, progress is being made and it could be possible in a year or two, Balandin said.

Initially, graphene would likely be used in some niche applications such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells, Balandin said. But, in five years, he said, it could be used with silicon in computer chips, for example as interconnect wiring or heat spreaders. It may also find applications in ultra-fast transistors for radio frequency communications. Low-noise graphene transistors have already been demonstrated in Balandin's lab.

Balandin published the Nature Materials paper with two of his graduate students Suchismita Ghosh, who is now at Intel Corporation, and Samia Subrina, Lau. one of her graduate students, Wenzhong Bao, and Denis L. Nika and Evghenii P. Pokatilov, visting researchers in Balandin's lab who are based at the State University of Moldova.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of over 19,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Sean Nealon | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>