Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat transport through single molecules

19.07.2019

International team of researchers with participation of the University of Konstanz achieves breakthrough in the area of heat transport at molecular scales

Combining novel theoretical and experimental approaches, researchers from the University of Michigan (USA), Kookmin University (South Korea), the University of Konstanz (Germany) and the Okinawa Institute of Science and Technology Graduate University (Japan) have successfully measured and described the thermal conductance of single-molecule junctions – a key quantity in nanoscale transport phenomena that has so far eluded direct experimental determination. A joint paper entitled “Thermal Conductance of Single-Molecule Junctions” has been published online in the journal Nature on 17 July 2019.


Illustration of the experimental setup to measure the heat flow through a single molecule.

Copyright: Jan C. Klöckner

“The control of heat transport at the molecular scale is a key factor in the development of nanostructured materials and technologies such as molecular electronics, thermally conductive polymers and thermoelectric energy-conversion devices”, explains Associate Professor Fabian Pauly, a theoretical condensed matter physicist and the leader of the Quantum Transport and Electronic Structure Theory Unit at Okinawa Institute of Science and Technology Graduate University.

Fabian Pauly, who is also a Principal Investigator at the University of Konstanz’s Collaborative Research Centre 767 “Controlled Nanosystems: Interaction and Interfacing to the Macroscale”, contributed the theoretical models to the experimental breakthrough.

In short molecules, thermal energy transfer is believed to be determined by phase-coherent, ballistic processes as compared to incoherent and diffusive ones in conventional macroscopic systems.

“The problem is that while a range of other single-molecule-level transport properties have been successfully measured in the past, thermal conductance has proven difficult to determine due to considerable challenges associated with detecting extremely small heat currents at picowatt resolution”, Fabian Pauly continues.

Experimental breakthrough

Scientists from the Department of Mechanical Engineering at the University of Michigan managed to successfully measure thermal transport through single-molecule junctions for the very first time. They applied a custom-developed calorimetric-scanning-thermal-microscopy technique to prototypical thiol-terminated alkane molecules which were provided by researchers from the Department of Chemistry at Kookmin University in South Korea.

Working in an ultra-high vacuum environment, the US team used a self-assembled monolayer of alkane molecules to facilitate the formation of single-molecule junctions between a gold-coated microscope tip and a gold substrate.

The transfer of heat from the heated tip to the cold substrate, which was kept at room temperature throughout, allowed the researchers to determine the resulting thermal conductance, which was found to originate from the vibrations of atoms, also called phonons. A sophisticated averaging technique was required to measure the small quantity.

The theory behind the experiments

As Fabian Pauly points out: “Previous theoretical work conducted in my group made predictions on the size of thermal conductance values for various single-molecule junctions, providing important information to our experimental colleagues regarding the measurement resolution required to achieve successful quantification”.

Combining nonequilibrium Green’s function techniques with density functional theory in custom-developed code, Fabian Pauly and his doctoral student Jan Klöckner, who is based at University of Konstanz, were able to compute the thermal conductance due to phonons for junction geometries containing alkane molecules of variable length.

The experiments with such molecules that were conducted at the University of Michigan yield strong experimental evidence in support of the theorists’ assumptions of a phase-coherent transport regime. “In other words, heat transport in alkane-based single-molecule junctions is virtually independent of length”, explains Jan Klöckner, who helped to develop the ab initio simulations used to understand the experimental data.

These insights do not only resolve the longstanding problem of determining thermal conductance at the single-molecule level experimentally. They will also enable systematic studies of thermal transport through other one-dimensional systems such as polymer chains: “Having shown that heat transport at the molecular scale is length-independent, we must now try to find out how we can enhance or reduce it. Ultimately, what we hope to do in the future is to identify ways of controlling the flow of heat by molecular design”, concludes Fabian Pauly.

Facts:
- Original publication: Longji Cui, Sunghoon Hur, Zico Alaia Akbar, Jan C. Klöckner, Wonho Jeong, Fabian Pauly, Sung-Yeon Jang, Pramod Reddy, Edgar Meyhofer. Thermal Conductance of Single-Molecule Junctions. Nature, 17.07.2019. DOI: https://doi.org/10.1038/s41586-019-1420-z.
- Researchers from the University of Michigan (USA), Kookmin University (South Korea), the University of Konstanz (Germany) and the Okinawa Institute of Science and Technology Graduate University (Japan) have successfully measured and described the thermal conductance of single-molecule junctions for the first time
- Groundbreaking experiments, conducted at the University of Michigan, pave way for further research into thermal transport through single molecules and other one-dimensional systems
- Theoretical models developed by Fabian Pauly (University of Konstanz and Okinawa
Institute of Science and Technology Graduate University) and Jan Klöckner (University of Konstanz)
- Fabian Pauly’s and Jan Klöckner’s research supported by the University of Konstanz’s Collaborative Research Centre 767 “Controlled Nanosystems: Interaction and Interfacing to the Macroscale”

Note to editors:
An image is available for download here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/heat_transport_n...
Caption: Illustration of the experimental setup to measure the heat flow through a single molecule. A heated tip of a scanning tunneling microscope (STM) is brought close to a cold substrate so that a single molecule can bridge the gap between them.
Copyright: Jan C. Klöckner

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>