Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heading towards a tsunami of light

19.03.2019

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says Illia Thiele, a theoretical physicist at Chalmers University of Technology.


Ultra-intense light pulses, consisting of a single wave period, can be described as a tsunami of light. So far, such strong and short light pulses have never been observed. Now, researchers from Chalmers University of Technology and the University of Gothenburg, Sweden, propose a theoretical setup for creating the much-anticipated strong waves. The light pulses can be used to study interactions between matter and light in a new way.

Credit: Yen Strandqvist/Illia Thiele/Chalmers University of Technology

Together with Dr Evangelos Siminos at the University of Gothenburg, and Tünde Fülöp, Professor of Physics at Chalmers, Illia Thiele now presents a theoretical method for creating the fastest possible single wave motion. This kind of radiation has never yet been observed in the universe or even the lab.

The radiation source is interesting for understanding the properties of different materials. Since it offers an ultra-fast switching of light matter interactions, it can be useful in material science, or sensor related research, for example. Moreover, it can be used as a driver for other types of radiation, and to push the limits of how short a light pulse could be.

"An ultra-intense pulse is like a great tsunami of light. The wave can pull an electron out of an atom, accelerating it to almost the speed of light, creating exotic quantum states. This is the fastest and strongest switch possible, and it paves the way for advances in fundamental research," says Dr Illia Thiele.

The new pulses can be used to probe and control matter in unique ways. While other light pulses, with multiple wave periods, impose changes in the material properties gradually, pulses with a single strong wave period cause sudden and unexpected reactions.

Researchers worldwide have tried to create this source of radiation, since it is of high interest for the scientific communities within physics and material science.

"Now, we hope to be able to bring our theoretical setup to the lab. Our method could help close the existing gaps in the scientific landscape of light sources," says Tünde Fülöp.

Read the scientific paper Electron beam driven generation of frequency-tunable isolated relativistic sub-cycle pulses in Physical Review Letters.

A more detailed explanation of the new method to create ultra-intense light pulses

The researchers propose a method for the generation of ultra-intense light pulses containing less than a single oscillation of the electromagnetic field. These so-called sub-cycle pulses can be used to probe and control matter in unique ways. Conventional methods can only produce sub-cycle pulses of limited field strength: above a certain threshold the amplifying medium would be ionized by the intense fields.

The researchers propose to use an electron beam in a plasma, which is not subject to a damage threshold, as an amplifying medium for a seed electromagnetic pulse. To ensure that energy is transferred from the electron beam to the pulse in such a way that a sub-cycle pulse is produced, the beam needs to be introduced at an appropriate phase of the oscillation of the electromagnetic field.

This can be achieved by using a mirror to reflect the seed pulse while the electron beam is being injected. This scenario leads to significant amplification of the seed pulse and the formation of an intense, isolated, sub-cycle pulse. Readily available terahertz seed pulses and electron bunches from laser-plasma accelerators could generate mid-infrared sub-cycle pulses with millijoule-level energies, which are highly desirable as probes of matter but not possible to produce with conventional sources.

###

For more information, contact:

Illia Thiele, Postdoctoral researcher, Department of Physics, Chalmers University of Technology, +46 76 607 82 79, illia.thiele@chalmers.se

Tünde Fülöp, Professor, Department of Physics, Chalmers University of Technology, +46 72 986 74 40, tunde.fulop@chalmers.se

Evangelos Siminos, Assistant Professor, Department of Physics, University of Gothenburg, +46 31 786 9161, evangelos.siminos@physics.gu.se

Media Contact

Joshua Worth
joshua.worth@chalmers.se
46-317-726-379

 @chalmersuniv

http://www.chalmers.se/en/ 

Joshua Worth | EurekAlert!

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>