Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene flakes for future transistors

15.03.2018

These nanostructures could open new prospects for the development of innovative devices thanks to quantum effects and unique magnetic properties

Tiny and very promising for possible applications in the field of nanoelectronics: they are the graphene nanoflakes studied by a SISSA's team and protagonists of a study recently published in the Nano Letters journal. These hexagonal shaped nanostructures would allow to exploit quantum effects to modulate the current flow.


On the left: This is a spin filter made out of a magnetic nanoflake: a current of electrons with spin 'up' and 'down' in equal proportions flows through the device. Due to destructive interference in a spin channel (for example: down) the outgoing current is prevalently made of spin-up electrons. On the right: Schematic illustration of the device and plot of the spin-filtering efficiency.

Credit: Angelo Valli

Usage Restrictions: The image can be used in connection with this research

Thanks to their intrinsic magnetic properties, they could also represent a significant step forward in the field of spintronics, which is based on the electron spin. The study, conducted by a theoretical analysis and simulations at the computer, was led by Massimo Capone, recently appointed Outstanding Referee by Physical Review Letters, the prestigious journal of the American Physical Society.

"We have been able to observe two key phenomena by analysing the properties of graphene nanoflakes. Both are of great interest for possible future applications" explain Angelo Valli and Massimo Capone, authors of the study together with Adriano Amaricci and Valentina Brosco.

The first phenomenon deals with the so-called interference between electrons and is a quantum phenomenon: «In nanoflakes, the electrons interfere with each other in a "destructive" manner if we measure the current in a certain configuration. This means that there is no transmission of current.

This is a typically quantum phenomenon, which only occurs at very reduced sizes. By studying the graphene flakes we have understood that it is possible to bring this phenomenon to larger systems, therefore into the nano world and on a scale in which it is observable and can be exploited for possible uses in nanoelectronics». The two researchers explain that in what are called "Quantum interference transistors" destructive interference would be the "OFF" status. For the "ON" status, they say it is sufficient to remove the conditions for interference, thereby enabling the current to flow.

Magnetism and spintronics

But there's more. In the study, the researchers demonstrated that the nanoflakes present new magnetic properties which are absent, for example, in an entire sheet of graphene: «The magnetism emerges spontaneously at their edges, without any external intervention. This enables the creation of a spin current». The union between the phenomena of quantum interference and of magnetism would allow to obtain almost complete spin polarization, with a huge potential in the field of spintronics, explain the researchers. These properties could be used, for example, in the memorising and processing information technologies, interpreting the spin as binary code. The electron spin, being quantised and having only two possible configurations (which we could call "up" and "down"), is very well suited for this kind of implementation.

Next step: the experimental test

To improve the efficiency of the possible device and the percentage of current polarization the researchers have also developed a protocol that envisages the interaction of the graphene flakes with a surface made of nitrogen and boron. «The results obtained are really interesting. This evidence now awaits the experimental test, to confirm what we have theoretically predicted» concludes Massimo Capone, head of the research and recently awarded the title of Outstanding Referee by the American Physical Society journal; in this way, each year, the journal indicates the male and female scientists who have distinguished themselves for their expertise in collaborating with the journal.

Media Contact

Donato Ramani
ramani@sissa.it
0039-040-378-7513

http://www.sissa.it 

Donato Ramani | EurekAlert!

More articles from Physics and Astronomy:

nachricht Fusion by strong lasers
05.12.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht NASA's OSIRIS-REx mission explains Bennu's mysterious particle events
05.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>