Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy formation simulated without dark matter

07.02.2020

For the first time, researchers from the Universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter. To replicate this process on the computer, they have instead modified Newton's laws of gravity. The galaxies that were created in the computer calculations are similar to those we actually see today. According to the scientists, their assumptions could solve many mysteries of modern cosmology. The results are published in the "Astrophysical Journal".

Cosmologists nowadays assume that matter was not distributed entirely evenly after the Big Bang. The denser places attracted more and more matter from their surroundings due to their stronger gravitational forces. Over the course of several billion years, these accumulations of gas eventually formed the galaxies we see today.


The distribution of matter 1.5 billion years after the start of the simulation. The lighter the color, the higher the density of the gas. The light blue dots show young stars.

© AG Kroupa/Uni Bonn

An important ingredient of this theory is the so-called dark matter. On the one hand, it is said to be responsible for the initial uneven distribution that led to the agglomeration of the gas clouds. It also explains some puzzling observations.

For instance, stars in rotating galaxies often move so fast that they should actually be ejected. It appears that there is an additional source of gravity in the galaxies that prevents this - a kind of "star putty" that cannot be seen with telescopes: dark matter.

However, there is still no direct proof of its existence. "Perhaps the gravitational forces themselves simply behave differently than previously thought," explains Prof. Dr. Pavel Kroupa from the Helmholtz Institute for Radiation and Nuclear Physics at the University of Bonn and the Astronomical Institute of Charles University in Prague.

This theory bears the abbreviation MOND (MOdified Newtonian Dynamics); it was discovered by the Israeli physicist Prof. Dr. Mordehai Milgrom. According to the theory, the attraction between two masses obeys Newton's laws only up to a certain point. Under very low accelerations, as is the case in galaxies, it becomes considerably stronger. This is why galaxies do not break apart as a result of their rotational speed.

Results close to reality

"In cooperation with Dr. Benoit Famaey in Strasbourg, we have now simulated for the first time whether galaxies would form in a MOND universe and if so, which ones," says Kroupa's doctoral student Nils Wittenburg.

To do this he used a computer program for complex gravitational calculations which was developed in Kroupa's group. Because with MOND, the attraction of a body depends not only on its own mass, but also on whether other objects are in its vicinity.

The scientists then used this software to simulate the formation of stars and galaxies, starting from a gas cloud several hundred thousand years after the Big Bang. "In many aspects, our results are remarkably close to what we actually observe with telescopes," explains Kroupa.

For instance, the distribution and velocity of the stars in the computer-generated galaxies follow the same pattern that can be seen in the night sky. "Furthermore, our simulation resulted mostly in the formation of rotating disk galaxies like the Milky Way and almost all other large galaxies we know," says the scientist. "Dark matter simulations, on the other hand, predominantly create galaxies without distinct matter disks - a discrepancy to the observations that is difficult to explain."

Calculations based on the existence of dark matter are also very sensitive to changes in certain parameters, such as the frequency of supernovae and their effect on the distribution of matter in galaxies. In the MOND simulation, however, these factors hardly played a role.

Yet the recently published results from Bonn, Prague and Strasbourg do not correspond to reality in all points. "Our simulation is only a first step," emphasizes Kroupa. For example, the scientists have so far only made very simple assumptions about the original distribution of matter and the conditions in the young universe.

"We now have to repeat the calculations and include more complex influencing factors. Then we will see if the MOND theory actually explains reality."

Wissenschaftliche Ansprechpartner:

Prof. Dr. Pavel Kroupa
Helmholtz Institute for Radiation and Nuclear Physics
University of Bonn
Tel. +49-(0)228/736140 or +49-(0)157-89091309
E-mail: pkroupa@uni-bonn.de

Nils Wittenburg
Helmholtz Institute for Radiation and Nuclear Physics
University of Bonn
Tel: +49-(0)178-5446958
E-mail: s6niwitt@uni-bonn.de

Originalpublikation:

Nils Wittenburg, Pavel Kroupa and Benoit Famaey: The formation of exponential disk galaxies in MOND. Astrophysical Journal, Internet: http://arxiv.org/abs/2002.01941

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Big Bang Galaxies Galaxy Nuclear Physics Radiation dark matter gravitational forces

More articles from Physics and Astronomy:

nachricht Artificial intelligence 'sees' quantum advantages
05.02.2020 | Moscow Institute of Physics and Technology

nachricht ALMA catches beautiful outcome of stellar fight
05.02.2020 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

Im Focus: Viscosity measurements offer new insights into the earth's mantle

An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle. The data obtained support the assumption that a bridgmanite-enriched rock layer was formed during the early history of the earth at a depth of around 1,000 kilometres – at the border to the upper mantle.

In addition, the data also provides indications that the lower mantle contains larger reservoirs of materials that originated in an early magma ocean and have...

Im Focus: Fast rotating white dwarf drags its space-time in a cosmic dance

According to Einstein's general relativity, the rotation of a massive object produces a dragging of space-time in its vicinity. This effect has been measured, in the case of the Earth’s rotation, with satellite experiments. With the help of a radio pulsar, an international team of scientists (with important contributions from scientists at the Max Planck Institute for Radio Astronomy in Bonn, Germany) were able to detect the swirling of the space-time around its fast-rotating white dwarf-companion star, and thus confirm the theory behind the formation of this unique binary star system.

In 1999, a unique binary system was discovered with the Australian Parkes Radio Telescope in the constellation Musca (the Fly), close to the famous Southern...

Im Focus: Quantum logic spectroscopy unlocks potential of highly charged ions

Scientists from the Physikalisch-Technische Bundesanstalt (PTB) and the Max Planck Institute for Nuclear Physics (MPIK) have carried out pioneering optical measurements of highly charged ions with unprecedented precision. To do this, they isolated a single Ar¹³⁺ ion from an extremely hot plasma and brought it practically to rest inside an ion trap together with a laser-cooled, singly charged ion. Employing quantum logic spectroscopy on the ion pair, they have increased the relative precision by a factor of a hundred million over previous methods. This opens up the multitude of highly charged ions for novel atomic clocks and further avenues in the search for new physics. [Nature, 29.01.2020]

Highly charged ions are—although seemingly exotic—a very natural form of visible matter. All the matter in our sun and in all other stars is highly ionized,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Fighting Against Multi-Resistant Bacteria

07.02.2020 | Life Sciences

Galaxy formation simulated without dark matter

07.02.2020 | Physics and Astronomy

Statistical method developed at TU Dresden allows the detection of higher order dependencies

07.02.2020 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>