Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First demonstration of antimatter wave interferometry

06.05.2019

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This wave-particle duality was postulated already in 1924 by the French physicist Louis de Broglie.


The Talbot-Lau interferometer of the QUPLAS collaboration at the Positron Laboratory of the Politecnico di Milano in Como.

LHEP / AEC, University of Bern

The existence of the wave property of matter has been successfully demonstrated in a number of experiments with electrons and neutrons, as well as with more complex matter, up to large molecules.

For antimatter the wave-particle duality had also been proven through diffraction experiments. However, researchers of the QUPLAS collaboration now established the wave behavior in a single positron (antiparticle to the electron) interference experiment. The results are reported in the Science Advances journal.

An experiment already envisaged by Einstein

The QUPLAS scientific collaboration includes researchers from the University of Bern and from the University and Politecnico of Milano. To demonstrate the wave duality of single positrons they performed measurements with a setup similar to the so-called double-slit experiment.

This setup was already suggested as a gedankenexperiment by famous physicists like Albert Einstein and Richard Feynman; it is often used in quantum theory to demonstrate the wave nature of particles. In the experiment particles (in this case positrons) are directed from a source to a position sensitive detector.

In between there are gratings with patterns of two or more slits which the particles go through. Particles behaving like particles travel in straight lines and would produce a pattern corresponding exactly to the grating.

If the particles have a wave nature, a striped interference pattern appears at the detector which is different from the grating.

The new pattern is generated by the superposition of the waves emitted by the source and travelling through the grating.

Micrometric resolution

The researchers of the QUPLAS collaboration were able to generate for the first time such an interference pattern from single antimatter particle waves. It was obtained thanks to an innovative period-magnifying Talbot-Lau interferometer coupled to a nuclear emulsion position sensitive detector.

"With the nuclear emulsions we are able to determine the impact point of individual positrons very precisely which allows us to reconstruct their interferometric pattern with micrometric accuracy – thus to better than millionth of a meter", explains Dr. Ciro Pistillo of the Laboratory of High Energy Physics (LHEP) and Albert Einstein Center (AEC) of the University of Bern. This feature allowed the researchers to overcome the main limitations of antimatter experiments, namely low antiparticle flux and beam manipulation complexity.

The scientists of LHEP and AEC played a key role for the success of the project: Akitaka Ariga, Antonio Ereditato, Ciro Pistillo and Paola Scampoli were in particular responsible for the design, construction and operations of the emulsion detector and for the analysis of positron interaction data.

New field of investigations of antimatter

"Our observation of the energy dependence of interference pattern proves its quantum-mechanical origin and thus the wave nature of the positrons", says Professor Paola Scampoli. The success of the experiment paves the way to a new field of investigations based on antimatter interferometry.

A goal is for example to perform gravity measurements with exotic matter-antimatter symmetric atoms such as positronium. With this one could test the validity of the Weak Equivalence Principle for antimatter. This principle is at the basis of general relativity and has never been tested with antimatter. Future research fields based on antimatter interferometry could in the future provide information about the imbalance of matter and antimatter in the universe.

Wissenschaftliche Ansprechpartner:

Dr. Ciro Pistillo (English, Italian, requests in German will be forwarded)
University of Bern
Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics
Tel. +41 (0)31 631 40 63 / ciro.pistillo@lhep.unibe.ch

Originalpublikation:

S. Sala, A. Ariga, A. Ereditato, R. Ferragut, M. Giammarchi, M. Leone, C. Pistillo, P. Scampoli, First demonstration of antimatter wave interferometry. Sci. Adv. 5, eaav7610 (2019). DOI: 10.1126/sciadv.aav7610

Weitere Informationen:

https://www.unibe.ch/news/media_news/media_relations_e/media_releases/2019/medie...

Nathalie Matter | Universität Bern

More articles from Physics and Astronomy:

nachricht Sculpting super-fast light pulses
03.05.2019 | National Institute of Standards and Technology (NIST)

nachricht Quantum sensor for photons
03.05.2019 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First demonstration of antimatter wave interferometry

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This...

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

Im Focus: RadarGlass: Functional thin-film structures for integrated radar sensors

It is only an inconspicuous piece of paper, but it is an important milestone for autonomous driving: At the end of 2018 the three partners from the joint research project RadarGlass applied for a patent for an innovative radar system. The Fraunhofer Institute for Laser Technology ILT from Aachen, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP from Dresden and the Institute of High Frequency Technology IHF of RWTH Aachen University have developed a coating process chain that enables radar sensors to be integrated in car headlights. After almost two years in development they have manufactured a working prototype.

Completely autonomous vehicles pose an enormous challenge for sensor technology because, in principle, the supporting system must hear, see and feel better...

Im Focus: Novel method developed by HKBU scholars could help produce purer, safer drugs

Physics and Chemistry scholars from Hong Kong Baptist University (HKBU) have invented a new method which could speed up the drug discovery process and lead to the production of higher quality medicinal drugs which are purer and have no side effects. The technique, which is a world-first breakthrough, uses a specific nanomaterial layer to detect the target molecules in pharmaceuticals and pesticides in just five minutes.

The new HKBU invention can be applied to the drug discovery process, as well as the production and quality control stages of pharmaceutical manufacturing. It...

Im Focus: Decoupled graphene thanks to potassium bromide

The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. This alters the electrical properties of the graphene produced, bringing them closer to pure graphene, as reported by physicists from the universities of Basel, Modena and Munich in the journal ACS Nano.

Graphene consists of a layer of carbon atoms just one atom in thickness in a honeycomb pattern and is the subject of intensive worldwide research.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A question of time

06.05.2019 | Life Sciences

Driving chemical reactions with light

06.05.2019 | Life Sciences

Improving the well-being of heart-failure patients

06.05.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>