Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extremely rare triple quasar found

12.03.2013
For only the second time in history, a team of scientists--including Carnegie's Michele Fumagalli--have discovered an extremely rare triple quasar system. Their work is published by Monthly Notices of the Royal Astronomical Society. It is available online.

Quasars are extremely bright and powerful sources of energy that sit in the center of a galaxy, surrounding a black hole. In systems with multiple quasars, the bodies are held together by gravity and are believed to be the product of galaxies colliding.

It is very difficult to observe triplet quasar systems, because of observational limits that prevent researchers from differentiating multiple nearby bodies from one another at astronomical distances. Moreover, such phenomena are presumed to be very rare.

By combining multiple telescope observations and advanced modeling, the team--led by Emanuele Farina of the University of Insubria in Como Italy--was able to find the triplet quasar, called QQQ J1519+0627. The light from the quasars has traveled 9 billion light years to reach us, which means the light was emitted when the universe was only a third of its current age.

Advanced analysis confirmed that what the team found was indeed three distinct sources of quasar energy and that the phenomenon is extremely rare.

Two members of the triplet are closer to each other than the third. This means that the system could have been formed by interaction between the two adjacent quasars, but was probably not triggered by interaction with the more-distant third quasar. Furthermore, no evidence was seen of any ultra-luminous infrared galaxies, which is where quasars are commonly found. As a result, the team proposes that this triplet quasar system is part of some larger structure that is still undergoing formation.

"Honing our observational and modeling skills and finding this rare stellar phenomenon will help us understand how cosmic structures assemble in our universe and the basic processes by which massive galaxies form," Fumagalli said.

"Further study will help us figure out exactly how these quasars came to be and how rare their formation is," Farina added.

This research was based on observations collected at the La Silla Observatory with the New Technology Telescope of the European Southern Observatory and at the Calar Alto Observatory with the 3.5m telescope of the Centro Astronomico Hispano Aleman.

This work was supported by Societa Carlo Gavazzi S.pA., Thales Alenia space Italia S.p.A., Germany's National Research Centre for Aeronautics and Space, and NASA.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Michele Fumagalli | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>