Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equatorial jet in Venusian atmosphere discovered by Akatsuki

04.09.2017

Observations by Japan's Venus climate orbiter Akatsuki have revealed an equatorial jet in the lower to middle cloud layer of the planet's atmosphere, a finding that could be pivotal to unraveling a phenomenon called superrotation.

Venus rotates westward with a very low angular speed; it takes 243 Earth days to rotate once. The planet's atmosphere rotates in the same direction but at much higher angular speeds, which is called "superrotation."


An illustration of Akatsuki successfully tracking lower-altitude clouds during the night with its near-infrared camera IR2.

Credit: PLANET-C Project Team

The planet is covered by thick clouds that extend from an altitude of about 45 kilometers to 70 kilometers. The superrotation reaches its maximum near the top of this cloud, where the rotational speed is about 60 times that of the planet itself. The cause of this phenomenon, however, is shrouded iVen mystery.

Akatsuki was launched in 2010 by the Japan Aerospace Exploration Agency to unravel the atmospheric mysteries of Venus. Although lower-altitude clouds cannot be seen through with visible light, Akatsuki's near-infrared camera IR2 successfully tracked the clouds - in particular, thicker clouds between 45 kilometers to 60 kilometers in altitude. This was made possible by observing the silhouettes of clouds that appear when infrared light from thermal radiation originating in the lower atmosphere filter through clouds.

Similar observations were previously made by the Venus Express orbiter of the European Space Agency and Galileo spacecraft of the U.S. National Aeronautics and Space Administration, but they provided only limited data of the planet's low-latitude zones. From these observations, scientists speculated that wind speeds at lower-to-middle cloud altitudes are horizontally uniform and have few temporal variations.

In the study published in Nature Geoscience, the team of researchers including Hokkaido University Associate Professor Takeshi Horinouchi analyzed the data collected by Akatsuki between March and August 2016. The team employed a cloud-tracking method they recently developed to deduce horizontal distributions of winds based on data from Akatsuki.

They discovered an equatorial jet in the wind velocities based on image data from July 2016 and that the jet existed at least two months after that. In March that year, the wind velocities in the same latitude zones were rather slow - thus there was no jet.

The findings showed for the first time that wind velocities can be markedly high forming a jet near the equator, which have never been found not only in the scantily observed lower to middle cloud layers but also in the more-extensively studied high layers.

"Our study uncovered that wind velocities in the lower-to-middle cloud layer have temporal and spatial variabilities much greater than previously thought," says Takeshi Horinouchi. "Although it remains unclear why such an equatorial jet appears, the mechanisms that could cause it are limited and related to various theories about superrotation. So, further study of the Akatsuki data should help glean useful knowledge not only about local jets but also would help address superrotation theories."

Media Contact

Naoki Namba
81-117-062-185

 @hokkaido_uni

https://www.global.hokudai.ac.jp/ 

Naoki Namba | EurekAlert!

More articles from Physics and Astronomy:

nachricht How heavy elements come about in the universe
18.03.2019 | Goethe-Universität Frankfurt am Main

nachricht Revealing the secret of the vacuum for the first time
15.03.2019 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

How heavy elements come about in the universe

18.03.2019 | Physics and Astronomy

Robot arms with the flexibility of an elephant’s trunk

18.03.2019 | Power and Electrical Engineering

Microbes can grow on nitric oxide (NO)

18.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>