Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entangled atoms shine in unison

15.05.2018

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible today to exploit quantum properties specifically for technical applications.


Physicists compared the photon interference produced by entangled and non-entangled barium atoms.

IQOQI Innsbruck/Harald Ritsch

The team led by the Innsbruck quantum computer pioneer Rainer Blatt controls individual atoms very precisely in experiments with ion traps. The deliberate entanglement of these quantum particles not only opens up the possibility of building a quantum computer, but also creates the basis for the measurement of physical properties with previously unknown precision.

The physicists have now succeeded for the first time in demonstrating fully-controlled free-space quantum interference of single photons emitted by a pair of effectively-separated entangled atoms.

Sensitive measurements

"Today, we can very precisely control the position and entanglement of particles and generate single photons as needed," explains Gabriel Araneda from Rainer Blatt's team from the Department of Experimental Physics at the University of Innsbruck. "Together, this allows us to investigate the effects of entanglement in the collective atom-light interaction."

The physicists at the University of Innsbruck compared the photon interference produced by entangled and non-entangled barium atoms. The measurements showed that these are qualitatively different. In fact, the measured difference of the interference fringes directly corresponds to the amount of entanglement in the atoms.

"In this way we can characterize the entanglement fully optically," Gabriel Araneda emphasizes the significance of the experiment. The physicists were also able to demonstrate that the interference signal is highly sensitive to environmental factors at the location of the atoms. "We take advantage of this sensitivity and use the observed interference signal to measure magnetic field gradients," says Araneda.

This technique may lead to the development of ultra-sensitive optical gradiometers. As the measured effect does not rely in the proximity of the atoms, these measurements could allow to precisely compare field strengths at separated locations, such as that of the Earth's magnetic or gravitational fields.

The work was published in the journal Physical Review Letters and was financially supported by the Austrian Science Fund FWF, the European Union and the Federation of Austrian Industries Tyrol, among others.

Publication: Interference of single photons emitted by entangled atoms in free space. Gabriel Araneda, Daniel B. Higginbottom, Lukáš Slodička, Yves Colombe, Rainer Blatt. Phys. Rev. Lett. 120, 193603 DOI: 10.1103/PhysRevLett.120.193603

Contact:
Gabriel Araneda
Department of Experimental Physics
University of Innsbruck
phone: +43 512 507 52472
email: Gabriel.Araneda-Machuca@uibk.ac.at
web: https://quantumoptics.at

Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at
web: https://www.uibk.ac.at

Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.120.193603 - Interference of single photons emitted by entangled atoms in free space. Gabriel Araneda, Daniel B. Higginbottom, Lukáš Slodička, Yves Colombe, Rainer Blatt. Phys. Rev. Lett. 120, 193603
https://quantumoptics.at - Quantum Optics and Spectroscopy group

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>