Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth-led black hole hunters tackle a cosmic conundrum

21.04.2015

Dartmouth astrophysicists and their colleagues have not only proven that a supermassive black hole exists in a place where it isn't supposed to be, but in doing so have opened a new door to what things were like in the early universe.

Henize 2-10 is a small irregular galaxy that is not too far away in astronomical terms -- 30 million light-years. "This is a dwarf starburst galaxy -- a small galaxy with regions of very rapid star formation -- about 10 percent of the size of our own Milky Way," says co-author Ryan Hickox, an assistant professor in Dartmouth's Department of Physics and Astronomy. "If you look at it, it's a blob, but it surprisingly harbors a central black hole."


A Hubble Space Telescope image shows the Henize 2-10 galaxy, with a hidden supermassive black hole at its center.

Credit: NASA

Hickox says there may be similar small galaxies in the known universe, but this is one of the only ones close enough to allow detailed study. Lead author Thomas Whalen, Hickox and a team of other researchers have now analyzed a series of four X-ray observations of Henize 2-10 using three space telescopes over 13 years, providing conclusive evidence for the existence of a black hole.

Their findings appear as an online preprint to be published in The Astrophysical Journal Letters. A PDF also is available on request.

Suspicions about Henize 2-10 first arose in 2011 when another team, that included some of the co-authors, first looked at galaxy Henize 2-10 and tried to explain its behavior. The observed dual emissions of X-ray and radio waves, often associated with a black hole, gave credence to the presence of one. The instruments utilized were Japan's Advanced Satellite for Cosmology and Astrophysics (1997), the European Space Agency's XMM-Newton (2004, 2011) and NASA's Chandra X-ray Observatory (2001).

"The galaxy was bright in 2001, but it has gotten less bright over time," says Hickox. "This is not consistent with being powered only by star formation processes, so it almost certainly had to have a small supermassive black hole -- small compared to the largest supermassive black holes in massive elliptical galaxies, but is still a million times the mass of the sun."

A characteristic of supermassive black holes is that they do change with time -- not a huge amount, explains Hickox, "and that is exactly what Tom Whalen found," he says. "This variability definitely tells us that the emission is coming from a compact source at the center of this system, consistent with it being a supermassive black hole."

While supermassive black holes are typically found in the central bulges of galaxies, Henize 2-10 has no bulge. "All the associations that people have made between galaxies and black holes tell us there ought to be no black hole in this system," says Whalen, but the team has proven otherwise. Whalen, a recent Dartmouth graduate, is now a member of the Chandra X-ray Center team at the Harvard-Smithsonian Center for Astrophysics.

A big question is where black holes come from. "When people try to simulate where the galaxies come from, you have to put in these black holes at the beginning, but we don't really know what the conditions were. These dwarf starburst galaxies are the closest analogs we have in the universe around us now, to the first galaxies early in the universe," says Whalen.

The authors conclude: "Our results confirm that nearby star-forming galaxies can indeed form massive black holes and that by implication so can their primordial counterparts."

"Studying those to get some sense of what might have happened very early in the universe is very powerful," says Hickox.

###

Available to comment are Dartmouth Assistant Professor Ryan Hickox at Ryan.C.Hickox@dartmouth.edu and Thomas Whalen at twhalen@cfa.harvard.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>