Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Countdown to the space mission “Solar Orbiter”: Measuring instruments from Kiel start their voyage

18.11.2016

Around five years ago, a team led by a physicist from Kiel University, Professor Robert Wimmer-Schweingruber, won the coveted tender for providing instruments to be placed on board the “Solar Orbiter” space probe. This joint mission of the European Space Agency (ESA) and the US space agency NASA is expected to launch in October 2018, and will go closer to the sun than has ever been done before. Now, exactly on schedule, the preparations in Kiel for this mission are entering their final phase. On Monday 21 November the flight instruments from Kiel will be handed over to the space probe installation team in England.

Instruments on board a space probe must be able to withstand large temperature variations, intense vibrations during the launch of the rocket or voltage surges, without their functionality being affected.


The three sensors from Kiel are ready for space: EPT-HET1 and 2 on the left, and STEP on the right.

Photo/Copyright: Jürgen Haacks, CAU


Experts, including representatives of the ESA, closely examined the test results and the sensors fro ...

Photo/Copyright: Jürgen Haacks, CAU

In order to ensure this, scientists at the Institute of Experimental and Applied Physics subjected their instruments to extensive tests. Representatives of ESA assessed the results just over two weeks ago, and after a few subsequent improvements, finally certified the solar particle sensors from Kiel for use in space. “Our sensors have passed the tests with flying colours!” said a delighted Wimmer-Schweingruber.

“The instruments have been approved. On Monday, our team will personally deliver them to England. It is especially thanks to our excellent team that we have successfully met the tight deadline!”

A total of four instruments will be installed in the “Energetic Particle Detector” (EPD) on board the space probe. The sensors measure electrons, protons and ions of all the particles in space, from helium nuclei right through to iron nuclei.

They must cover a particularly wide energy range, from approximately 2 kiloelectronvolts up to 200 megaelectronvolts. The results of these measurements will help to better understand sun particle radiation and its effect on the earth.

Photos are available to download:
http://www.uni-kiel.de/download/pm/2016/2016-386-1.jpg
The three sensors from Kiel are ready for space: EPT-HET1 and 2 on the left, and STEP on the right.
Photo/Copyright: Jürgen Haacks, CAU

http://www.uni-kiel.de/download/pm/2016/2016-386-2.jpg
Close-up of the two-in-one-sensor EPT-HET (left), which measures in two directions. STEP (right): due to the magnetic field in the sensor, the installation position in the space probe was changed on the fly during the development process, as there were fears that it could affect other instruments. In spite of the tight deadline, the team from Kiel managed to modify their instrument on time for its new position.
Photo/Copyright: Jürgen Haacks, CAU

http://www.uni-kiel.de/download/pm/2016/2016-386-3.jpg
Experts, including representatives of the ESA, closely examined the test results and the sensors from Kiel on 3 November.
Photo/Copyright: Jürgen Haacks, CAU

http://www.uni-kiel.de/download/pm/2016/2016-386-4.jpg
The team from Kiel delivers: their sensors will be installed in the Solar Orbiter space probe.
Photo/Copyright: Jürgen Haacks, CAU

Background information
In addition to a team of engineers, there are also scientists, doctoral candidates and students from Kiel University involved in the EPD projects. They work together in an international team, with members from Spain, Germany and the USA. Among the total of four instruments in the “Energetic Particle Detector” (EPD) are an Instrument Control Unit (ICU) and the SupraThermal Ion Spectrograph (SIS). This SIS will undertake particle measurements during the voyage to the sun, in an energy range from around 100 kiloelectronvolts to 10 megaelectronvolts. The sensor was developed at the Johns Hopkins University Applied Physics Laboratory (APL) under the leadership of Professor Wimmer-Schweingruber.

Three sensors were developed in the Kiel physics cleanroom:
The STEP (Supra Thermal Electrons and Protons) sensor measures in the energy range from 2.5 to 65 kiloelectronvolts. If there is an influx of particles in this range, electrons are deflected by means of a magnetic field on the one side of the instrument. Only protons and ions are measured here. On the other side of the instrument, without a magnetic field, the entire flow of particles in the relevant energy range is measured. The difference between the two sides allows determination of the electrons present.

The EPT-HET1 and 2 instruments are identical, and each contain two sensors: EPT (Electron and Proton Telescope) and HET (High-Energy Telescope) sensors. Together they measure electrons in the energy range from 20 kiloelectronvolts to 20 megaelectronvolts, as well as protons from 20 kiloelectronvolts to 100 megaelectronvolts. The HET also measures heavy ions up to 200 megaelectronvolts. The EPT-HET1 and EPT-HET2 instruments can each measure in two directions (sun-facing side / dark side or alternatively prograde / retrograde relative to orbit).

The Kiel projects are funded by the DLR Space Agency, and the SIS is funded by the ESA.

More information:
http://www.physik.uni-kiel.de/de/institute/ieap/ag-wimmer/solo

Contact:
Prof. Robert Wimmer-Schweingruber
Institute of Experimental and Applied Physics
Kiel University
E-mail: wimmer@physik.uni-kiel.de
Mobile number: +49 173 951 3332

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Claudia Eulitz
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-386-solar-orbiter&...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>