Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chiral Quantum Optics: A New Research Field with Bright Perspectives


Surprising direction-dependent effects emerge when light is guided in microscopic structures. This discovery shows promise for both classical and quantum information processing.

Recently, surprising physical effects were observed using special microscopic waveguides for light. Such “photonic structures” currently are revolutionizing the fields of optics and photonics, and have opened up the new research area of “Chiral Quantum Optics”. Physicists from Copenhagen, Innsbruck, and Vienna, who are leading figures in this field, have now written an overview on the topic which just appeared in the scientific journal “Nature”.

Surprising effect: directional emission of light

TU Wien

What one learns at school is that light oscillates under a right angle (transversal) with respect to its direction of propagation. Among experts, however, it was already known that light behaves differently when it is confined strongly in the transversal plane using so-called “photonic structures”.

In particular, this is the case for special ultra-thin glass fibers which have a diameter of only a few hundred nanometers (one nanometer is a millionth part of a millimeter) and which are thereby smaller than the wavelength of light. Also waveguides based on so-called “photonic crystals” (two-dimensional structures with periodically arranged holes) can confine light in this way.

In this situation, the light also oscillates along its propagation direction (longitudinal). The combination of transversal and longitudinal oscillation leads to a rotating electric field which physicist call circular polarization. Without the spatial confinement, the electric field associated with circularly polarized light behaves like the propeller of an aircraft whose axis is parallel to the direction of propagation.

“However, in narrow photonic waveguides, the electric field of the light resembles the rotor of a helicopter,” explains Arno Rauschenbeutel from the Vienna Center for Quantum Science and Technology at the Institute of Atomic and Subatomic Physics of TU Wien, Austria. Here, the spin of the light points along the axis of the rotor and is therefore oriented perpendicular to the propagation direction of the light.

Spin–momentum locking of light

This unexpected phenomenon has important consequences: The rotational sense of the electric field is suddenly defined by the propagation direction of the light. “As soon as light in a photonic structure travels in the opposite direction, the electric field rotates the other way around and the spin flips”, states Rauschenbeutel. Physicists call this phenomenon spin-momentum locking.

Things become particularly thrilling when so-called “quantum emitters” are coupled to the light field. These could for example be atoms or quantum dots, i.e., nanoscopic structures made from semiconductor material. Such emitters can be excited by light (light absorption) and radiate it back (light emission). Until recently, it was taken for granted in quantum optics that this interaction between light and emitters is always symmetric; precisely the same amount of light is radiated into one and into the opposite direction.

However, quantum emitters can be prepared such that they only absorb light of a certain polarization. In photonic structures, the rotational sense of the electric field, i.e., the light’s polarization, depend on the propagation direction. Consequently, if we now bring a suitably prepared quantum emitter into the light field of a photonic structure, the strength of the interaction between the emitter and the light will depend on the light’s propagation direction. “Having a direction-dependent interaction means that the symmetry is broken: The emitter radiates differently into opposite directions,” states Rauschenbeutel. This direction-dependence (chirality) is the underlying concept of “chiral quantum optics” and occurs not only for the emission of light, but also for absorption and scattering.

Successful cooperation

Since 2012, different groups have demonstrated corresponding effects in many experiments and used them for different purposes. Rauschenbeutel and his team concentrated their research on ultrathin glass fibers and bottle-shaped resonators, which they couple to atoms and microscopic metallic particles. Their co-authors around Peter Lodahl from the Niels Bohr Institute in Copenhagen, on the other hand, use waveguides based on photonic crystals. Furthermore, Hannes Pichler and Peter Zoller from the University of Innsbruck and the Institute for Quantum Optics und Quantum Information of the Austrian Academy of Sciences provided the theoretical foundations and developed impressive visions for the future.

The new physical effects enable fundamentally new applications. “We developed photonic diodes which are one-way streets for light. We realized circulators in which a single atom controls light similar to traffic in a roundabout,” says Rauschenbeutel emphasizing the successful cooperation between the Austrian scientists within the Special Research Program FoQuS (Foundations and Applications of Quantum Science) for this work.

Such nonreciprocal devices have optical properties that depend on the propagation direction of the light and, analogously to their electronic counterparts, are required for the realization optical circuits. Such optical chips could be employed in future computers.
But optical chips based on chiral quantum optics may not only be used for classical information processing. They are also suitable for processing single photons and can furthermore be prepared in quantum mechanical superposition states. In this way, chiral quantum optical components are well suited for process quantum information in future quantum networks or quantum computers.

Original publication: Chiral quantum optics
Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Arno Rauschenbeutel, Philipp Schneeweiss, Jürgen Volz, Hannes Pichler & Peter Zoller
Nature 541, 473–480 (26 January 2017) doi:10.1038/nature21037

Further information:
Prof. Arno Rauschenbeutel
Technische Universität Wien
Institute of Atomic and Subatomic Physics
Stadionallee 2, 1020 Vienna
T: +43-1-58801-141761

Dr. Florian Aigner | Technische Universität Wien
Further information:

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

Science & Research
Overview of more VideoLinks >>>