Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY physicists master unexplored electron property

26.07.2017

While the charge and spin properties of electrons are widely utilized in modern day technologies such as transistors and memories, another aspect of the subatomic particle has long remained uncharted. This is the "valley" property which has potential for realizing a new class of technology termed "valleytronics" - similar to electronics (charge) and spintronics (spin). This property arises from the fact that the electrons in the crystal occupy different positions that are quantum mechanically distinct.

Now City College of New York physicists led by Vinod Menon have demonstrated how to manipulate the "valley" property using light by placing two-dimensional semiconductors in a light trapping structure called microcavity.


Schematic showing control of valley properties in 2-D semiconductors embedded in microcavity.

Image courtesy: Zheng Sun

This gave rise to half-light-half matter quasi-particles which have the fingerprint of the "valley" property. These quasi-particles were then optically controlled using a laser to access the electrons occupying specific "valley."

The research appears in the latest issue of Nature Photonics and is a major step towards realization of "valleytronic" devices for logic gates.

"Observing this property in traditional semiconductors was not easy. However with the advent of the new class of two-dimensional semiconductors, this property became accessible to manipulation," said Zheng Sun, a graduate student in Menon's research group and lead author of the paper.

###

Other researchers included CCNY graduate students, Jie Gu and Christopher Considine; undergraduate Michael Dollar, postdoctoral researcher Biswanath Chakraborty, Zav Shotan, and Xiaoze Liu; physics professor Pouyan Ghaemi and his postdoctoral researcher Areg Ghazaryan; and Stephane Kena-Cohen (Ecole Polytechnic, Montreal, Canada) also participated in the study.

The work was supported by the NSF through the EFRI 2-DARE program, the ECCS division, the Columbia-CCNY NSF MRSEC Center, the US Army Research Office and a Discovery grant from the Natural Sciences and Engineering Research Council of Canada.

Media Contact

Jay Mwamba
jmwamba@ccny.cuny.edu
212-650-7580

http://www2.ccny.cuny.edu 

Jay Mwamba | EurekAlert!

Further reports about: CCNY Electrons Photonics logic gates semiconductors

More articles from Physics and Astronomy:

nachricht Harvesting energy from the human knee
17.07.2019 | American Institute of Physics

nachricht Neutrino-Observatorium IceCube am Südpol wird ausgebaut
17.07.2019 | Deutsches Elektronen-Synchrotron DESY

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For bacteria, the neighbors co-determine which cell dies first: The physiology of survival

17.07.2019 | Life Sciences

Harvesting energy from the human knee

17.07.2019 | Physics and Astronomy

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>