Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cat brain: A step toward the electronic equivalent

15.04.2010
A cat can recognize a face faster and more efficiently than a supercomputer.

That's one reason a feline brain is the model for a biologically-inspired computer project involving the University of Michigan.

U-M computer engineer Wei Lu has taken a step toward developing this revolutionary type of machine that could be capable of learning and recognizing, as well as making more complex decisions and performing more tasks simultaneously than conventional computers can.

Lu previously built a "memristor," a device that replaces a traditional transistor and acts like a biological synapse, remembering past voltages it was subjected to. Now, he has demonstrated that this memristor can connect conventional circuits and support a process that is the basis for memory and learning in biological systems.

A paper on the research is published online in Nano Letters and is scheduled to appear in the forthcoming April edition of the journal.

"We are building a computer in the same way that nature builds a brain," said Lu, an assistant professor in the U-M Department of Electrical Engineering and Computer Science. "The idea is to use a completely different paradigm compared to conventional computers. The cat brain sets a realistic goal because it is much simpler than a human brain but still extremely difficult to replicate in complexity and efficiency."

Today's most sophisticated supercomputer can accomplish certain tasks with the brain functionality of a cat, but it's a massive machine with more than 140,000 central processing units and a dedicated power supply. And it still performs 83 times slower than a cat's brain, Lu wrote in his paper.

In a mammal's brain, neurons are connected to each other by synapses, which act as reconfigurable switches that can form pathways linking thousands of neurons. Most importantly, synapses remember these pathways based on the strength and timing of electrical signals generated by the neurons.

In a conventional computer, logic and memory functions are located at different parts of the circuit and each computing unit is only connected to a handful of neighbors in the circuit. As a result, conventional computers execute code in a linear fashion, line by line, Lu said. They are excellent at performing relatively simple tasks with limited variables.

But a brain can perform many operations simultaneously, or in parallel. That's how we can recognize a face in an instant, but even a supercomputer would take much, much longer and consume much more energy in doing so.

So far, Lu has connected two electronic circuits with one memristor. He has demonstrated that this system is capable of a memory and learning process called "spike timing dependent plasticity." This type of plasticity refers to the ability of connections between neurons to become stronger based on when they are stimulated in relation to each other. Spike timing dependent plasticity is thought to be the basis for memory and learning in mammalian brains.

"We show that we can use voltage timing to gradually increase or decrease the electrical conductance in this memristor-based system. In our brains, similar changes in synapse conductance essentially give rise to long term memory," Lu said.

The next step is to build a larger system, Lu said. His goal is achieve the sophistication of a supercomputer in a machine the size of a two-liter beverage container. That could be several years away.

Lu said an electronic analog of a cat brain would be able to think intelligently at the cat level. For example, if the task were to find the shortest route from the front door to the sofa in a house full of furniture, and the computer knows only the shape of the sofa, a conventional machine could accomplish this. But if you moved the sofa, it wouldn't realize the adjustment and find a new path. That's what engineers hope the cat brain computer would be capable of. The project's major funder, the Defense Advanced Research Projects Agency, isn't interested in sofas. But this illustrates the type of learning the machine is being designed for.

The paper is titled "Nanoscale Memristor Device as Synapse in Neuromorphic System." The research is funded by the Defense Advanced Research Projects Agency and the National Science Foundation. The work was performed in the U-M Lurie Nanofabrication Facility.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu/

More articles from Physics and Astronomy:

nachricht Neutrino-Observatorium IceCube am Südpol wird ausgebaut
17.07.2019 | Deutsches Elektronen-Synchrotron DESY

nachricht Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017
16.07.2019 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

Atacama Desert: Some lichens can meet their need for water from air humidity

17.07.2019 | Life Sciences

New DFG Research Group "Metrology for THz Communications"

17.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>